Riv. Mat. Univ. Parma, Vol. 5, No. 1, 2014

Francesca Crispo [1] and Paolo Maremonti [1]

On the higher regularity of solutions to the \(p\)-Laplacean system in the subquadratic case

Pages: 39-63
Received: 5 April 2013  
Accepted: 13 May 2013
Mathematics Subject Classification (2010): 35J92, 35J55, 35B65.

Keywords: \(p\)-Laplacean, higher integrability, global regularity.
Authors address:
[1] : Second University of Naples, Via Vivaldi 43, Caserta, 81100, Italy

Abstract: We study the regularity properties of solutions to the non-homogeneous \(p\)-Laplacean system, \(p\in (1,2)\), in a bounded domain \(\Omega\). Under suitable restrictions on the exponent \(p\), we construct a \(W_0^{1,2}(\Omega)\cap W^{ 2,2}(\Omega)\) solution. Then we prove higher integrability results of the second-order derivatives of the solution. Finally, by means of semigroup properties of solutions to a special parabolic system, we prove a global pointwise bound for weak solutions under the only assumption \(p\in\Big(\displaystyle\frac{2n}{n+2}, 2\Big)\).


[1] E. Acerbi and N. Fusco, Regularity for minimizers of nonquadratic functionals: the case \(1 < p < 2\), J. Math. Anal. Appl. 140 (1989), 115-135.
[2] E. Acerbi and G. Mingione, Gradient estimates for a class of parabolic systems, Duke Math. J. 136 (2007), 285-320.
[3] V. Adolfsson, \(L^p\)-integrability of the second order derivatives of Green potentials in convex domains, Pacific J. Math. 159 (1993), 201-225.
[4] H. Beirao da Veiga, Navier-Stokes equations with shear thinning viscosity. Regularity up to the boundary, J. Math. Fluid Mech. 11 (2009), 258-273.
[5] H. Beirao da Veiga and F. Crispo, On the global regularity for nonlinear systems of the \(p\)-Laplacian type, Discrete Contin. Dyn. Syst. Ser. S 6 (2013), 1173-1191.
[6] H. Beirao da Veiga and F. Crispo, On the global \(W^{2,q}\) regularity for nonlinear N-systems of the \(p\)-Laplacian type in n space variables, Nonlinear Anal. 75 (2012), 4346-4354.
[7] M. Carozza, N. Fusco and G. Mingione, Partial regularity of minimizers of quasiconvex integrals with subquadratic growth, Ann. Mat. Pura Appl. (IV) 175 (1998), 141-164.
[8] F. Crispo and C. R. Grisanti, On the existence, uniqueness and \(C^{1,\gamma}(\overline\Omega)\cap W^{2,2}(\Omega)\) regularity for a class of shear-thinning fluids, J. Math. Fluid Mech. 10 (2008), 455-487.
[9] F. Crispo and P. Maremonti, Higher regularity of solutions to the singular \(p\)-Laplacean parabolic system, Adv. Differential Equations 18 (2013), 849-894.
[10] F. Duzaar and G. Mingione, Regularity for degenerate elliptic problems via \(p\)-harmonic approximation, Ann. Inst. H. Poincaré Anal. Non Linéaire 21 (2004), 735-766.
[11] F. Duzaar and G. Mingione, Gradient estimates via linear and nonlinear potentials, J. Funct. Anal. 259 (2010), 2961-2998.
[12] L. C. Evans, Quasiconvexity and partial regularity in the calculus of variations, Arch. Rational Mech. Anal. 95 (1986), 227-252.
[13] M. Giaquinta and L. Martinazzi, An introduction to the regularity theory for elliptic systems, harmonic maps and minimal graphs, Appunti. Sc. Norm. Super. Pisa (N. S.), Edizioni della Normale, Pisa 2005.
[14] M.-H. Giga, Y. Giga and J. Saal, Nonlinear partial differential equations. Asymptotic behavior of solutions and self-similar solutions, Progr. Nonlinear Differential Equations Appl., 79, Birkhäuser, Boston 2010.
[15] T. Kilpeläinen and J. Malý, The Wiener test and potential estimates for quasilinear elliptic equations, Acta Math. 172 (1994), 137-161.
[16] J. Kinnunen and S. Zhou, A local estimate for nonlinear equations with discontinuous coeffcients, Comm. Partial Differential Equations 24 (1999), 2043-2068.
[17] O. A. Ladyzhenskaya, The mathematical theory of viscous incompressible flow, Gordon and Breach, New York-London-Paris 1969.
[18] O. A. Ladyzhenskaya, The boundary value problems of mathematical physics, Applied Mathematical Sciences, 49, Springer-Verlag, New York 1985.
[19] J.-L. Lions, Quelques méthodes de résolution des problémes aux limites non linéaires, Dunod; Gauthier-Villars, Paris 1969.
[20] P. Maremonti, Some interpolation inequalities involving Stokes operator and first order derivatives, Ann. Mat. Pura Appl. (IV) 175 (1998), 59-91.
[21] P. Maremonti and V. A. Solonnikov, Estimates of the solution of the Dirichlet problem for the Laplace operator in exterior domains, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 146 (1985), 92-101. Translated in J. Soviet Math. 40 (1988), 72-79.
[22] G. Mingione, Regularity of minima: an invitation to the dark side of the calculus of variations, Appl. Math. 51 (2006), 355-426.
[23] J. Nash, Continuity of solutions of parabolic and elliptic equations, Amer. J. Math. 80 (1958), 931-954.
[24] G. Prodi, Teoremi di tipo locale per il sistema di Navier-Stokes e stabilità delle soluzioni stazionarie, Rend. Sem. Mat. Univ. Padova 32 (1962), 374- 397.
[25] P. Tolksdorf, Everywhere-regularity for some quasilinear systems with a lack of ellipticity, Ann. Mat. Pura Appl. (IV) 134 (1983), 241-266.

Home Riv.Mat.Univ.Parma