Riv. Mat. Univ. Parma, Vol. 5, No. 1, 2014

Paolo Baroni [1]

Nonlinear parabolic equations with Morrey data

Pages: 65-92
Received: 19 April 2013   
Accepted: 30 July 2013
Mathematics Subject Classification (2010): 35R06, 35B65, 35K55.

Keywords: Calderón-Zygmund estimates, measure data problems, Morrey spaces.
Author address:
[1] : Department of Mathematics, Uppsala Universitet, Lägerhyddsvägen 1, Uppsala, SE-751 06, Sweden

Abstract: We make a short survey of how the heuristic principle

"the less the measure concentrates, the better the gradient is"

about measure data problems can be implemented for elliptic and parabolic equations of \(p\)-Laplacian type, both in terms of integrability and differentiability properties. Moreover we prove improved fractional differentiability for the gradient to solution to parabolic equations with linear growth, in the case of Morrey measure data.


[1] D. R. Adams, Traces of potentials arising from translation invariant operators, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 25 (1971), 203–217.
[2] P. Baroni and J. Habermann, Calderón-Zygmund estimates for parabolic measure data equations, J. Differential Equations 252 (2012), no. 1, 412–447.
[3] P. Baroni and J. Habermann, New gradient estimates for parabolic equations, Houston J. Math. 38 (2012), no. 3, 855–914.
[4] P. Baroni, Marcinkiewicz estimates for degenerate parabolic equations with measure data, submitted.
[5] P. Benilan, L. Boccardo, T. GallouëT, R. Gariepy, M. Pierre and J. L. Vázquez, An \(L^1\)-theory of existence and uniqueness of solutions of nonlinear elliptic equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 22 (1995), no. 2, 241–273.
[6] L. Boccardo, Problemi differenziali ellittici e parabolici con dati misure, Boll. Un. Mat. Ital. A (7) 11 (1997), no. 2, 439–461.
[7] L. Boccardo and T. Gallouët, Nonlinear elliptic and parabolic equations involving measure data, J. Funct. Anal. 87 (1989), 149–169.
[8] L. Boccardo and T. Gallouët, Nonlinear elliptic equations with right-hand side measures, Comm. Partial Differential Equations 17 (1992), no. 3-4, 641–655.
[9] L. Boccardo, A. Dall’aglio, T. Gallouët and L. Orsina, Nonlinear parabolic equations with measure data, J. Funct. Anal. 147 (1997), no. 1, 237– 258.
[10] L. Caffarelli, Elliptic second order equations, Rend. Sem. Mat. Fis. Milano 58 (1988), 253–284.
[11] S. Campanato, Proprietà di inclusione per spazi di Morrey, Ricerche Mat. 12 (1963), 67-86.
[12] S. Campanato, Proprietà di una famiglia di spazi funzionali, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 18 (1964), 137–160.
[13] S. Campanato, Equazioni ellittiche non variazionali a coefficienti continui, Ann. Mat. Pura Appl. (4) 86 (1970), 125–154.
[14] A. Dall’aglio, Approximated solutions of equations with \(L^1\) data. Application to the H-convergence of quasi-linear parabolic equations, Ann. Mat. Pura Appl. (4) 170 (1996), 207–240.
[15] R. A. DeVore and R. C. Sharpley, Maximal functions measuring smoothness, Mem. Amer. Math. Soc. 47 (1984), no. 293, viii+115 pp.
[16] A. Di castro and G. Palatucci, Fractional regularity for nonlinear elliptic problems with measure data, J. Convex Anal. 20 (2013), no. 4, 901–918.
[17] E. Di nezza, G. Palatucci and E. Valdinoci, Hitchhiker’s guide to the fractional Sobolev spaces, Bull. Sci. Math. 136 (2012), no. 5, 521–573.
[18] E. Dibenedetto, Degenerate parabolic equations, Universitext, Springer- Verlag, New York 1993.
[19] G. Dolzmann, N. Hungerbühler and S. Müller, Uniqueness and maximal regularity for nonlinear elliptic systems of n-Laplace type with measure valued right hand side, J. Reine Angew. Math. 520 (2000), 1–35.
[20] O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. Ural’tseva, Linear and quasi-linear equations of parabolic type, Translations of Mathematical Monographs, Vol. 23, American Mathematical Society, Providence, R.I. 1968.
[21] G. M. Lieberman, Sharp forms of estimates for subsolutions and supersolutions of quasilinear elliptic equations involving measures, Comm. Partial Differential Equations 18 (1993), 1191–1212.
[22] G. M. Lieberman, A mostly elementary proof of Morrey space estimates for elliptic and parabolic equations with VMO coefficients, J. Funct. Anal. 201 (2003), no. 2, 457–479.
[23] T. Kato, Strong solutions of the Navier-Stokes equation in Morrey spaces, Bol. Soc. Brasil. Mat. (N.S.) 22 (1992), 127–155.
[24] T. Kilpeläinen and X. Zhong, Removable sets for continuous solutions of quasilinear elliptic equations, Proc. Amer. Math. Soc. 130 (2002), 1681–1688.
[25] J. Kristensen and G. Mingione, The singular set of minima of integral functionals, Arch. Ration. Mech. Anal. 180 (2006), 331–398.
[26] T. Kuusi and G. Mingione, Gradient regularity for nonlinear parabolic equations, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 12 (2013), no. 4, 755–822.
[27] T. Kuusi and G. Mingione, Riesz potentials and nonlinear parabolic equations, Arch. Ration. Mech. Anal. 212 (2014), no. 3,727-780.
[28] G. Mingione, The Calderón-Zygmund theory for elliptic problems with measure data, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 6 (2007), no. 2, 195–261.
[29] G. Mingione, Gradient estimates below the duality exponent, Math. Ann. 346 (2010), no. 3, 571–627.
[30] G. Mingione, Nonlinear measure data problems, Milan J. Math. 79 (2011), no. 2, 429–496.
[31] T. Miyakawa, On Morrey spaces of measures: basic properties and potential estimates, Hiroshima Math. J. 20 (1990), 213–222.
[32] G. Palatucci and A. Pisante, Improved Sobolev embeddings, profile decomposition, and concentration-compactness for fractional Sobolev spaces, Calc. Var. Partial Differential Equations, to appear, DOI: 10.1007/s00526-013-0656-y.
[33] J. Simon, Compact sets in the space \(L^p(0,T;B)\), Ann. Mat. Pura Appl. (IV) 146 (1987), 65–96.
[34] M. Taylor, Analysis on Morrey spaces and applications to Navier-Stokes and other evolution equations, Comm. Partial Differential Equations 17 (1992), 1407–1456.
[35] N. S. Trudinger and X.-J. Wang, Quasilinear elliptic equations with signed measure data, Discrete Contin. Dyn. Syst. 23 (2009), 477–494.
[36] S. Leonardi, Fractional differentiability for solutions of a class of parabolic systems with \(L^{1,\theta}\)-data, Nonlinear Anal. 95 (2014), 530–542.

Home Riv.Mat.Univ.Parma