**Fatma Gamze Düzgün** ^{[1]}, **Paolo Marcellini** ^{[2]} and **Vincenzo Vespri** ^{[2]}

*
Space expansion for a solution of an anisotropic
p-Laplacian equation by using a parabolic approach
*

**Pages:** 93-111

**Received:** 29 April 2013

**Accepted in revised form:** 5 September 2013

**Mathematics Subject Classification (2010):** 35J70, 35J92, 35B65.

**Keywords:** Degenerate elliptic equations, anisotropic p-Laplacian, quantitative estimates.

**Authors addresses:**

[1] : Department of Mathematics, Hacettepe University, 06800, Beytepe, Ankara, Turkey

[2] : Dipartimento di Matematica e Informatica "U. Dini", Università degli Studi di Firenze, Viale Morgagni 67/A, 50134 Firenze, Italy

**Abstract:**
In this study we show that a technique introduced in the parabolic setting works also in the elliptic context. More precisely we prove a space
expansion of positivity for solutions of an elliptic equation with anisotropic growth.

**References**

[1] L. Boccardo, P. Marcellini and C. Sbordone, *\(L^\infty\)-regularity for variational problems with sharp nonstandard growth conditions*, Boll. Un. Mat.
Ital. A (7) 4 (1990), 219-225.

[2] G. Cupini, P. Marcellini and E. Mascolo, *Local boundedness of solutions to quasilinear elliptic systems*, Manuscripta Math. 137 (2012), 287-
315.

[3] E. DiBenedetto, *Degenerate parabolic equations*, Springer-Verlag, New
York 1993.

[4] E. DiBenedetto, U. Gianazza and V. Vespri, *Harnack estimates for quasi-linear degenerate parabolic differential equations*, Acta Math. 200
(2008), 181-209.

[5] E. DiBenedetto, U. Gianazza and V. Vespri, *Forward, backward and elliptic Harnack inequalities for non-negative solutions to certain singular
parabolic partial differential equations*, Ann. Sc. Norm. Super. Pisa Cl. Sci.
(5) 9 (2010), 385-422.

[6] E. DiBenedetto, U. Gianazza and V. Vespri, *Harnack's inequality for degenerate and singular parabolic equations*, Springer Monographs in
Mathematics, Springer, New York 2012.

[7] U. Gianazza, M. Surnachev and V. Vespri, *A new proof of the Hölder continuity of solutions to p-Laplace type parabolic equations*, Adv. Calc.
Var. 3 (2010), 263-278.

[8] M. Giaquinta, *Growth conditions and regularity, a counterexample*,
Manuscripta Math. 59 (1987), 245-248.

[9] T. Kuusi, *Harnack estimates for weak supersolutions to nonlinear degenerate parabolic equations*, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 7 (2008),
673-716.

[10] V. Liskevich and I. I. Skrypnik, *Hölder continuity of solutions to an anisotropic elliptic equation*, Nonlinear Anal. 71 (2009), 1699-1708.

[11] P. Marcellini, *Un exemple de solution discontinue d'un probléme variationnel dans le cas scalaire*, Preprint n. 11, Ist. Mat. "U. Dini", Firenze,
1987.

[12] P. Marcellini, *Regularity of minimizers of integrals of the calculus of variations with nonstandard growth conditions*, Arch. Rational Mech. Anal.
105 (1989), 267-284.

[13] P. Marcellini, *Regularity and existence of solutions of elliptic equations with p, q-growth conditions*, J. Differential Equations 90 (1991), 1-30.

[14] P. Marcellini, *Regularity for some scalar variational problems under general growth conditions*, J. Optim. Theory Appl. 90 (1996), 161-181.

[15] S. M. Nikolskii, *An imbedding theorem for functions with partial derivatives considered in different metrics*, Izv. Akad. Nauk SSSR Ser. Mat. 22
(1958), 321-336. English translation: Amer. Math. Soc. Transl. 90 (1970),
27-44.

[16] M. Troisi, *Teoremi di inclusione per spazi di Sobolev non isotropi*, Ricerche Mat. 18 (1969), 3-24.

[17] N. S. Trudinger, An imbedding theorem for \(H_0(G,\Omega)\) spaces, Studia Math. 50 (1974), 17-30.

[18] J. M. Urbano, *The method of intrinsic scaling. A systematic approach to regularity for degenerate and singular PDEs*, Lecture Notes in Math., vol.
1930, Springer-Verlag, Berlin 2008.

Home Riv.Mat.Univ.Parma