Riv. Mat. Univ. Parma, Vol. 5, No. 2, 2014

Silvano Delladio[1]

A Whitney-type result about rectifiability of graphs

Pages: 387-397
Received: 24 June 2013   
Accepted: 3 September 2013
Mathematics Subject Classification (2010): Primary 49Q15, 28A75, 28A78; Secondary 28A12.

Keywords: Rectifiable sets, geometric measure theory, Whitney extension theorem.
Author address:
[1] : Department of Mathematics, UniversitÓ degli Studi di Trento, via Sommarive 14, Povo, Trento, Italy

Abstract: Given \(m>0\) and a measurable set \(E\subset\mathbb{R}^n\), \(E^{(m)}\) denotes the set of \(m\)-density points of \(E\), namely the points \(x\in\mathbb{R}^n\) at which \({\cal L}^n(B(x,r)\backslash E)\) is an infinitesimal of order greater than \(r^{m}\) (as \(r\to 0\)). We investigate the size of \(E^{(m)}\) in the particular case when \(E\) is a generalized Cantor set in \(\mathbb{R}\). Moreover we prove the following result. Let \(\varphi\in C^h(\Omega)\) and \(\Phi\in C^h(\Omega;\mathbb{R}^n))\), where \(\Omega\) is an open subset of \(\mathbb{R}^n\) and \(h\geq 1\). If \(K:=\{ x\in\Omega\,\vert\,\nabla\varphi(x)=\Phi(x)\}\) then the graph of \(\varphi_{\vert\Omega\cap K^{(n+h)}}\) is a \(n\)-dimensional \(C^{h+1}\)-rectifiable set.


[1] G. Alberti, A Lusin type theorem for gradients, J. Funct. Anal 100 (1991),110-118. [MR1124295]
[2] G. Anzellotti and R. Serapioni, \(\scr C_k\)-rectifiable sets, J. Reine Angew. Math. 453 (1994), 1-20. [MR1285779]
[3] A.-P. Calderón and A. Zygmund, Local properties of solutions of elliptic partial differential equations, Studia Math. 20 (1961), 171-225. [MR0136849]
[4] S. Delladio, Dilatations of graphs and Taylor's formula: some results about convergence, Real Anal. Exchange 29 (2003/04), no. 2, 687-712. [MR2083806]
[5] S. Delladio, Functions of class \(C^1\) subject to a Legendre condition in an enhanced density set , Rev. Mat. Iberoam. 28 (2012), no. 1, 127-140. [MR2904134]
[6] H. Federer, Geometric measure theory, Springer-Verlag, New York 1969. [MR0257325]
[7] P. Mattila, Geometry of sets and measures in Euclidean spaces, Cambridge University Press, Cambridge 1995. [MR1333890]
[8] W. P. Ziemer, Weakly differentiable functions, Grad. Texts in Math., 120, Springer-Verlag, New York 1989. [MR1014685]

Home Riv.Mat.Univ.Parma