Riv. Mat. Univ. Parma, Vol. 6, No. 1, 2015

Russel E. Caflisch[1], Francesco Gargano[2], Marco Sammartino[2] and Vincenzo Sciacca[2]

Complex singularities and PDEs

Pages: 69-133
Received: 13 February 2015   
Accepted in revised form: 8 May 2015.
Mathematics Subject Classification (2010): 35(35A20 35Q 35Q35 35Q53), 65(65M 65M60), 76(76D05 76D10).
Keywords: Complex singularity, Fourier transforms, Padé approximation, Borel and power series methods, dispersive shocks, fluid mechanics, zero viscosity.
Author address:
[1] : Mathematics Department, University of California at Los Angeles, Los Angeles, CA 90036, United States
[2] : Dipartimento di Matematica, Università di Palermo, 90123 Palermo, Italy

The work of FG, MS and VS has been partially supported by the GNFM of INDAM.

Abstract: In this paper we give a review on the computational methods used to capture and characterize the complex singularities developed by some relevant PDEs. We begin by reviewing the classical singularity tracking method and give an example of application using the Burgers equation as a case study. This method is based on the analysis of the Fourier spectrum of the solution and it allows to determine and characterize the complex singularity closest to the real domain. We then introduce other methods generally used to detect the hidden singularities. In particular we show some applications of the Padé approximation, of the Kida method, and of Borel-Polya method. We apply these techniques to the study of the singularity formation of some nonlinear dispersive and dissipative one dimensional PDE, of the 2D Prandtl equation and of the 2D Kadomtsev-Petviashvili equation. Finally the complex singularity analysis is applied to viscous high Reynolds number incompressible flows in the case of interaction with a rigid wall, and in the case of the vortex layers.


[1] G. R. Baker, R. E. Caflisch and M. Siegel, Singularity formation during Rayleigh-Taylor instability, J. Fluid Mech. 252 (1993), 51–75. [MR1230990]
[2] G. R. Baker and L. D. Pham, A comparison of blob methods for vortex sheet roll-up, J. Fluid Mech. 547 (2006), 297–316. [MR2263355]
[3] G. R. Baker and M. J. Shelley, On the connection between thin vortex layers and vortex sheets, J. Fluid Mech. 215 (1990), 161–194. [MR1061499]
[4] G. A. Baker Jr. and P. Graves-Morris, Padé approximants, 2nd ed., Cambridge University Press, Cambridge 1996. [MR1383091]
[5] G. R. Baker, D. I. Meiron and S. A. Orszag, Generalized vortex methods for free-surface flow problems, J. Fluid Mech. 123 (1982), 477–501. [MR0687014]
[6] J. P. Boyd, Large-degree asymptotics and exponential asymptotics for Fourier, Chebyshev and Hermite coefficients and Fourier transforms, J. Engrg. Math. 63 (2009), no. 2-4, 355–399. [MR2486453]
[7] J. P. Boyd, Chebyshev and Fourier spectral methods, Dover Publications, Mineoal, New York 2001. [MR1874071]
[8] R. E. Caflisch and O. F. Orellana, Singular solutions and ill-posedness for the evolution of vortex sheets, SIAM J. Math. Anal. 20 (1989), no. 2, 293–307. [MR0982661]
[9] R. E. Caflisch and M. Sammartino, Vortex layers in the small viscosity limit, “WASCOM 2005”—13th Conference on Waves and Stability in Continuous Media, World Sci. Publ., Hackensack, NJ 2006, pp. 59–70. [MR2231267]
[10] R. E. Caflisch and M. Siegel, A semi-analytic approach to Euler singularities, Methods Appl. Anal. 11 (2004), no. 3, 423–430. [MR2214685]
[11] R. E. Caflisch, Singularity formation for complex solutions of the 3D incompressible Euler equations, Phys. D 67 (1993), 1–18. [MR1234435]
[12] R.E. Caflisch, S. Jin, and G. Russo, Uniformly accurate schemes for hyperbolic systems with relaxation, SIAM J. Numer. Anal. 34 (1997), no. 1, 246–281. [MR1445737]
[13] C. Canuto, M. Y. Hussaini, A. Quarteroni and T. A. Zang, Spectral methods, Fundamentals in single domains, Scientific Computation, Springer-Verlag, Berlin 2006. [MR2223552]
[14] G. F. Carrier, M. Krook, and C. E. Pearson, Functions of a complex variable: Theory and technique, McGraw-Hill Book Co., New York-Toronto, Ont.-London 1966. [MR0222256]
[15] M. J. Chen and L. K. Forbes, Accurate methods for computing inviscid and viscous Kelvin-Helmholtz instability, J. Comput. Phys. 230 (2011), no. 4, 1499--1515. [MR2753375]
[16] C. Cichowlas and M.-E. Brachet, Evolution of complex singularities in Kida-Pelz and Taylor-Green inviscid flows, Fluid Dynam. Res. 36 (2005), 239–248. [MR2141909]
[17] H. J. H. Clercx and C.-H. Bruneau, The normal and oblique collision of a dipole with a no-slip boundary, Computers & Fluids 35 (2006), no. 3, 245–279. doi:10.1016/j.compfluid.2004.11.009
[18] G. M. Coclite, F. Gargano and V. Sciacca, Analytic solutions and singularity formation for the Peakon b-family equations, Acta Appl. Math. 122 (2012), 419–434. [MR2994009]
[19] S. J. Cowley, Computer extension and analytic continuation of Blasius’ expansion for impulsively flow past a circular cylinder, J. Fluid Mech. 135 (1983), 389–405. [MR0729416]
[20] S. J. Cowley, G. R. Baker and S. Tanveer, On the formation of Moore curvature singularities in vortex sheets, J. Fluid Mech. 378 (1999), 233–267. [MR1671776]
[21] G. Della Rocca, M. C. Lombardo, M. Sammartino and V. Sciacca, Singularity tracking for Camassa-Holm and Prandtl’s equations, Appl. Numer. Math. 56 (2006), no. 8, 1108–1122. [MR2234843]
[22] M. R. Dhanak, Equation of motion of a diffusing vortex sheet, J. Fluid Mech. 269 (1994), 265–281. [MR1280339]
[23] J. Duchon and R. Robert, Global vortex sheet solutions of Euler equations in the plane, J. Differential Equations 73 (1988), no. 2, 215-224. [MR0943940]
[24] N. M. Ercolani, C. D. Levermore and T. Zhang, The behavior of the Weyl function in the zero-dispersion KdV limit, Comm. Math. Phys. 183 (1997), no. 1, 119-143. [MR1461953]
[25] N. M. Ercolani, I. R. Gabitov, C. D. Levermore and D. Serre, (eds.), Singular limits of dispersive waves, NATO Advanced Science Institutes Series B: Physics, 320, Plenum Press, New York 1994. [MR1321190]
[26] J.-D. Fournier and U. Frisch, L’ équation de Burgers déterministe et statistique, J. Méc. Théor. Appl. 2 (1983), no. 5, 699–750. [MR0732888]
[27] U. Frisch, T. Matsumoto and J. Bec, Singularities of Euler flow? Not out of the blue!, J. Statist. Phys. 113 (2003), 761–781. [MR2036870]
[28] F. Gargano, M. C. Lombardo, M. Sammartino and V. Sciacca, Singularity formation and separation phenomena in boundary layer theory, Partial differential equations and fluid mechanics, London Math. Soc. Lecture Note Ser., 364, Cambridge Univ. Press, Cambridge 2009, pp. 81–120. [MR2605759]
[29] F. Gargano, M. Sammartino and V. Sciacca, Singularity formation for Prandtl’s equations, Phys. D 238 (2009), no. 19, 1975–1991. [MR2582626]
[30] F. Gargano, M. Sammartino and V. Sciacca, High Reynolds number Navier-Stokes solutions and boundary layer separation induced by a rectilinear vortex, Computers & Fluids 52 (2011), 73–91. [MR2971998]
[31] F. Gargano, M. Sammartino, V. Sciacca and K. W. Cassel, Analysis of complex singularities in high-Reynolds-number Navier-Stokes solutions, J. Fluid Mech. 747 (2014), 381–421. [MR3200689 ]
[32] F. Gargano, M. Sammartino, V. Sciacca and K. W. Cassel, Viscous-inviscid interactions in a boundary-layer flow induced by a vortex array, Acta Appl. Math. 132 (2014), 295–305. [MR3255045]
[33] R. E. Goldstein, A. I. Pesci and M. J. Shelley, Instabilities and singularities in Hele–Shaw flow, Phys. Fluids 10 (1998), no. 11, 2701–2723. [MR1650762]
[34] T. Grava and C. Klein, A numerical study of the small dispersion limit of the Korteweg-de Vries equation and asymptotic solutions, Phys. D 241 (2012), no. 23-24, 2246–2264. [MR2998126]
[35] A. J. Guttmann, Asymptotic analysis of power-series expansions, Phase transitions and critical phenomena, Vol. 13, Academic Press, London 1989, pp. 1–234. [MR1261226]
[36] A. Harten, High resolution schemes for hyperbolic conservation laws, J. Comput. Phys. 49 (1983), no. 3, 357–393. [MR0701178]
[37] P. Henrici, Applied and computational complex analysis, vol i, ii & iii, A Wiley-Interscience Publication, John Wiley & Sons, New York 1993.
[38] S. Jin, C. D. Levermore and D. W. McLaughlin, The semiclassical limit of the defocusing NLS hierarchy, Comm. Pure Appl. Math. 52 (1999), no. 5, 613–654. [MR1670048]
[39] S. Kamvissis, K. D. T.-R. McLaughlin and P. D. Miller, Semiclassical soliton ensembles for the focusing nonlinear Schrödinger equation, Annals of Mathematics Studies, 154, Princeton University Press, Princeton, NJ 2003. [MR1999840]
[40] S. Kida, Study of complex singularities by filtered spectral method, J. Phys. Soc. Japan 55 (1986), no. 5, 1542–1555. [DOI: http://dx.doi.org/10.1143/JPSJ.55.1542]
[41] C. Klein and K. Roidot, Numerical study of shock formation in the dispersionless Kadomtsev-Petviashvili equation and dispersive regularizations, Phys. D 265 (2013), 1–25. [MR3122203]
[42] C. Klein and K. Roidot, Numerical study of the semiclassical limit of the Davey-Stewartson II equations, Nonlinearity 27 (2014), no. 9, 2177-2214. [MR3247076]
[43] W. Kramer, H. J. H. Clercx and G. J. F. van Heijst, Vorticity dynamics of a dipole colliding with a no-slip wall, Phys. Fluids 19 (2007), 126603. [http://dx.doi.org/10.1063/1.2814345]
[44] R. Krasny, A study of singularity formation in a vortex sheet by the point-vortex approximation, J. Fluid Mech. 167 (1986), 65–93. [MR0851670]
[45] P. D. Lax and C. D. Levermore, The small dispersion limit of the Korteweg-de Vries equation. I, Comm. Pure Appl. Math. 36 (1983), no. 3, 253–290. [MR0697466]
[46] P. D. Lax and C. D. Levermore, The small dispersion limit of the Korteweg-de Vries equation. II, Comm. Pure Appl. Math. 36 (1983), no. 5, 571–593. [MR0697466]
[47] P. D. Lax and C. D. Levermore, The small dispersion limit of the Korteweg-de Vries equation. III, Comm. Pure Appl. Math. 36 (1983), no. 6, 809–829. [MR0720595]
[48] K. Malakuti, R. E. Caflisch, M. Siegel and A. Virodov, Detection of complex singularities for a function of several variables, IMA J. Appl. Math. 78 (2013), no. 4, 714–728. [MR3085311]
[49] C. Marchioro and M. Pulvirenti, Mathematical theory of incompressible nonviscous fluids, Applied Mathematical Sciences, 96, Springer-Verlag, New York 1994. [MR1245492]
[50] T. Matsumoto, J. Bec and U. Frisch, The analytic structure of 2D Euler flow at short times, Fluid Dynam. Res. 36 (2005), no. 4-6, 221–237. [MR2141908]
[51] D. W. Moore, The equation of motion of a vortex layer of small thickness, Studies in Appl. Math. 58 (1978), no. 2, 119–140. [MR0475268]
[52] D. W. Moore, The spontaneous appearance of a singularity in the shape of an evolving vortex sheet, Proc. Roy. Soc. London Ser. A 365 (1979), no. 1720, 105–119. [MR0527594]
[53] D. W. Moore, Numerical and analytical aspects of Helmholtz instability, Theoretical and applied mechanics (Lyngby, 1984), North-Holland, Amsterdam 1985. pp. 263-274. [MR0824049]
[54] A. V. Obabko and K. W. Cassel, Navier-Stokes solutions of unsteady separation induced by a vortex, J. Fluid Mech. 465 (2002), 99–130. [MR1928772]
[55] A. V. Obabko and K. W. Cassel, On the ejection-induced instability in Navier-Stokes solutions of unsteady separation, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 363 (2005), no. 1830, 1189–1198. [MR2176882]
[56] S. Osher and S. Chakravarthy, High resolution schemes and the entropy condition, SIAM J. Numer. Anal. 21 (1984), no. 5, 955–984. [MR0760626]
[57] W. Pauls and U. Frisch, A Borel transform method for locating singularities of Taylor and Fourier series, J. Stat. Phys. 127 (2007), no. 6, 1095–1119. [MR2331032]
[58] W. Pauls, T. Matsumoto, U. Frisch and J. Bec, Nature of complex singularities for the 2D Euler equation, Phys. D 219 (2006), no. 1, 40–59. [MR2245355]
[59] M. C. Pugh and M. J. Shelley, Singularity formation in thin jets with surface tension, Comm. Pure Appl. Math. 51 (1998), no. 7, 733–795. [MR1617250]
[60] P.L. Roe, Numerical algorithms for the linear wave equation, Royal Aircraft Establishment Technical Report (1981), 81047.
[61] K. Roidot and N. Mauser, Numerical study of the transverse stability of NLS soliton solution in several classes of NLS-type equations, arxiv:1401.5349 (2014).
[62] H. Schlichting, Boundary layer theory, Translated by J. Kestin, 4th ed., McGraw-Hill Series in Mechanical Engineering, McGraw-Hill Book Co., New York 1960. [MR0122222]
[63] D. Senouf, R. Caflisch and N. Ercolani, Pole dynamics and oscillations for the complex Burgers equation in the small-dispersion limit, Nonlinearity 9 (1996), no. 6, 1671–1702. [MR1419467]
[64] D. Senouf, Dynamics and condensation of complex singularities for Burgers’ equation. I, SIAM J. Math. Anal. 28 (1997), no. 6, 1457–1489. [MR1474224]
[65] D. Senouf, Dynamics and condensation of complex singularities for Burgers’ equation. II, SIAM J. Math. Anal. 28 (1997), no. 6, 1490–1513. [MR1474225]
[66] M. J. Shelley, A study of singularity formation in vortex–sheet motion by a spectrally accurate vortex method, J. Fluid. Mech. 244 (1992), 493–526. [MR1192255]
[67] M. Siegel and R. E. Caflisch, Calculation of complex singular solutions to the 3D incompressible Euler equations, Phys. D 238 (2009), no. 23-24, 2368–2379. [MR2576080]
[68] S.-I. Sohn, Singularity formation and nonlinear evolution of a viscous vortex sheet model, Phys. Fluids 25 (2013), no. 1, 014106. [http://dx.doi.org/10.1063/1.4789460]
[69] C. Sulem, P.-L. Sulem and H. Frisch, Tracing complex singularities with spectral methods, J. Comput. Phys. 50 (1983), no. 1, 138–161. [MR0702063]
[70] P. K. Sweby, High resolution schemes using flux limiters for hyperbolic conservation laws, SIAM J. Numer. Anal. 21 (1984), no. 5, 995–1011. [MR0760628]
[71] A. Tovbis, S. Venakides and X. Zhou, On semiclassical (zero dispersion limit) solutions of the focusing nonlinear Schrödinger equation, Comm. Pure Appl. Math. 57 (2004), no. 7, 877–985. [MR2044068]
[72] G. Tryggvason, W. J. A. Dahm and K. Sbeih, Fine structure of vortex sheet rollup by viscous and inviscid simulation, J. Fluids Eng. 113 (1991), no. 1, 31–36. [doi:10.1115/1.2926492]
[73] J. van der Hoeven, On asymptotic extrapolation, J. Symbolic Comput. 44 (2009), no. 8, 1000–1016. [MR2523764]
[74] L. L. van Dommelen and S. F. Shen, The spontaneous generation of the singularity in a separating laminar boundary layer, J. Comput. Phys. 38 (1980), 125–140. [MR0595970]
[75] B. van Leer, Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second-order scheme, J. Comput. Phys. 14 (1974), no. 4, 361–370. [doi:10.1016/0021-9991(74)90019-9]
[76] B. van Leer, Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method, J. Comput. Phys. 32 (1979), 101–136. [MR1486274]
[77] J. A. C. Weideman, Computing the dynamics of complex singularities of nonlinear PDEs, SIAM J. Appl. Dyn. Syst. 2 (2003), no. 2, 171–186 (electronic). [MR1998697]

Home Riv.Mat.Univ.Parma