Riv. Mat. Univ. Parma, Vol. 6, No. 1, 2015

Srboljub Simić[1], Milana Pavić-Čolić[2] and Damir Madjarević[1]

Non-equilibrium mixtures of gases: modelling and computation

Pages: 135-214
Received: 4 February 2015   
Accepted in revised form: 21 April 2015
Mathematics Subject Classification (2010): 76P05, 80A17, 76L05, 76R50.
Keywords: Mixtures of gases, extended thermodynamics, kinetic theory of mixtures, diffusion, shock waves.
Author address:
[1] : Department of Mechanics, University of Novi Sad, Trg Dositeja Obradovića 6, 21000 Novi Sad, Serbia
[2] : Department of Mathematics and Informatics, University of Novi Sad, Trg Dositeja Obradovića 4, 21000 Novi Sad, Serbia

This research was partially supported by by the Ministry of Education, Science and Technological Development, Republic of Serbia, through the project "Mechanics of nonlinear and dissipative systems -- contemporary models, analysis and applications", Project No. ON174016.}

Abstract: These notes present the material about modelling of non-equilibrium processes in mixtures of gases. It is mainly concerned with mixtures described within the context of extended thermodynamics, but also covers certain features of the kinetic theory of mixtures. General introduction puts extended thermodynamics into proper position with respect to other approaches (TIP and kinetic theory of gases). Extended thermodynamics of multi-temperature mixtures of Euler fluids is properly established and analyzed. Shock waves as particular non-equilibrium problem are thoroughly discussed. Kinetic modeling of mixtures is also discussed and related to the results of extended thermodynamics. The notes contain new results related to comparison of extended thermodynamic model of mixtures with Maxwell-Stefan diffusion model, and shock structure analysis in viscous multi-temperature model.


[1] K. Abe and H. Oguchi, An analysis of shock waves in binary gas mixtures with special regard to temperature overshoot, Report No. 511 (1974) Institute of Space and Aeronautical Science, University of Tokyo.
[2] F. Achleitner and P. Szmolyan, Saddle-node bifurcation of viscous profiles, Phys. D 241 (2012), 1703-1717. [MR2971471]
[3] P. Andries, K. Aoki and B. Perthame, A consistent BGK-type model for gas mixtures, J. Statist. Phys. 106 (2002), 993-1018. [MR1889599]
[4] P. Andries, P. Le Tallec, J.-P. Perlat and B. Perthame, The Gaussian-BGK model of Boltzmann equation with small Prandtl number, Eur. J. Mech. B Fluids 19 (2000), 813-830. [MR1803856]
[5] R. J. Atkin and R. E. Craine, Continuum theories of mixtures: basic theory and historical development, Quart. J. Mech. Appl. Math. 29 (1976), 209-244. [MR0418619]
[6] R. J. Atkin and R. E. Craine, Continuum theories of mixtures: applications, J. Inst. Math. Appl. 17 (1976) , 153-207. [MR0418620]
[7] C. Bardos, F. Golse and D. Levermore, Fluid dynamic limits of kinetic equations. I. Formal derivations, J. Statist. Phys. 63 (1991), no. 1-2, 323-344. [MR1115587]
[8] G. A. Bird, The structure of normal shock waves in a binary gas mixture, J. Fluid Mech. 31 (1968), 657-668. [DOI]
[9] G. A. Bird, Molecular gas dynamics and the direct simulation of gas flows, Clarendon Press, Oxford 1994.
[10] M. Bisi, G. Martalò and G. Spiga, Multi-temperature Euler hydrodynamics for a reacting gas from a kinetic approach to rarefied mixtures with resonant collisions, EPL (Europhysics Letters) 95 (2011), 55002. [DOI]
[11] M. Bisi, G. Martalò and G. Spiga, Multi-temperature hydrodynamic limit from kinetic theory in a mixture of rarefied gases, Acta Appl. Math. 122 (2012), 37-51. [MR2993980]
[12] G. Boillat and T. Ruggeri, Hyperbolic principal subsystems: entropy convexity and subcharacteristic conditions, Arch. Rational Mech. Anal. 137 (1997), 305-320. [MR1463797]
[13] G. Boillat and T. Ruggeri, On the shock structure problem for hyperbolic system of balance laws and convex entropy, Contin. Mech. Thermodyn. 10 (1998), 285-292. [MR1652858]
[14] T. Bose, High temperature gas dynamics, Springer-Verlag, Berlin 2004.
[15] D. Bothe and W. Dreyer, Continuum thermodynamics of chemically reacting fluid mixtures, Acta Mech. 226 (2015), 1757-1805. [MR3347503]
[16] L. Boudin, D. Götz and B. Grec, Diffusion models of multicomponent mixtures in the lung, ESAIM Proc. 30 (2010), 90-103. [MR2777658]
[17] L. Boudin, B. Grec and F. Salvarani, A mathematical and numerical analysis of the Maxwell-Stefan diffusion equations, Discrete Contin. Dyn. Syst. Ser. B 17 (2012), 1427-1440. [MR2903760]
[18] L. Boudin, B. Grec, M. Pavić and F. Salvarani, Diffusion asymptotics of a kinetic model for gaseous mixtures, Kinet. Relat. Models 6 (2013), 137-157. [MR3005625]
[19] R. E. Center, Measurment of shock-wave structure in Helium-Argon mixtures, Phys. Fluids 10 (1967), 1777-1784. DOI: 10.1063/1.1762357
[20] C. Cercignani, The Boltzmann equation and its applications, Springer-Verlag, New York 1988. [MR1313028]
[21] C. Cercignani, R. Illner and M. Pulvirenti, The Mathematical theory of dilute gases, Springer-Verlag, New York 1994. [MR1307620]
[22] S. Chapman and T. G. Cowling, The mathematical theory of nonuniform gases, Cambridge University Press, Cambridge 1990. [MR1148892]
[23] B. D. Coleman and W. Noll, The thermodynamics of elastic materials with heat conduction and viscosity, Arch. Rational Mech. Anal. 13 (1963), 167-178. [MR0153153]
[24] C. M. Dafermos, Hyperbolic conservation laws in continuum physics, 3rd ed., Springer-Verlag, Berlin 2010. [MR2574377]
[25] S. R. de Groot and P. Mazur, Non-equilibrium thermodynamics, North-Holland, Amsterdam 1962. [MR0140332]
[26] L. Desvillettes, R. Monaco and F. Salvarani, A kinetic model allowing to obtain the energy law of polytropic gases in the presence of chemical reactions, Eur. J. Mech. B Fluids 24 (2005), 219236. [MR2118066]
[27] L. C. Evans, Partial differential equations, 2nd ed., American Mathematical Society, Providence 2010. [MR2597943]
[28] V. Garzó and J. W. Dufty, Hydrodynamics for a granular binary mixture at low density, Phys. Fluids 14 (2002), no. 4, 1476. http://dx.doi.org/10.1063/1.1458007
[29] D. Gilbarg and D. Paolucci, The structure of shock waves in the continuum theory of fluids, J. Rational Mech. Anal. 2 (1953), 617642. [MR0059724]
[30] V. Giovangigli, Multicomponent flow modeling, Birkhäuser, Boston 1999. [MR1713516]
[31] C. J. Goebel, S. M. Harris and E. A. Johnson, Two-temperature disparate-mass gas mixtures: a thirteen moment description, Phys. Fluids 19 (1976), 627-635. http://dx.doi.org/10.1063/1.861521
[32] E. Goldman and L. Sirovich, Equations for gas mixtures, Phys. Fluids 10 (1967), 1928. http://dx.doi.org/10.1063/1.1762389
[33] H. Gouin and T. Ruggeri, Identification of an average temperature and a dynamical pressure in a multitemperature mixture of fluids, Phys. Rev. E 78 (2008), 016303. DOI: http://dx.doi.org/10.1103/PhysRevE.78.016303
[34] H. Grad, On the kinetic theory of rarefied gases, Comm. Pure Appl. Math. 2 (1949), 331-407. [MR0033674]
[35] H. Grad, Note on \(N\)-dimensional Hermite polynomials, Comm. Pure Appl. Math. 2 (1949), 325-330. [MR0033917]
[36] H. Grad, The profile of a steady plane shock wave, Comm. Pure Appl. Math. 5 (1952), 257-300. [MR0051736]
[37] H. Grad, Principles of the kinetic theory of gases, in "Handbuch der Physik/Encyclopedia of Physics", S. Flügge (ed.), Bd. 12, 205-294, Springer-Verlag, Berlin 1958. [MR0135535]
[38] H. Grad, Asymptotic theory of the Boltzmann equation, Phys. Fluids 6 (1963), no. 2 , 147-181. [MR0155541] - [DOI]
[39] A. E. Green and P. M. Naghdi, A Theory of mixtures, Arch. Rational Mech. Anal. 24 (1967), 243-263. [MR1553489]
[40] M. Groppi, G. Spiga and F. Zus, Euler closure of the Boltzmann equations for resonant bimolecular reactions, Phys. Fluids 18 (2006), 057105. [MR2259316]
[41] M. E. Gurtin, E. Fried and L. Anand, The mechanics and thermodynamics of continua, Cambridge University Press, Cambridge 2010. [MR2884384]
[42] L. N. Harnett and E. P. Muntz, Experimental investigation of normal shock wave velocity distribution functions in mixtures of Argon and Helium, Phys. Fluids 15 (1972), 565-572. http://dx.doi.org/10.1063/1.1693949
[43] W. L. Harris and G. K. Bienkowski, Structure of normal shock waves in gas mixtures, Phys. Fluids 14 (1971), 2652-2669. http://dx.doi.org/10.1063/1.1693388
[44] M. Heckl and I. Müller, Frame dependence, entropy, entropy flux and wave speeds in mixtures of gases, Acta Mech. 50 (1983), 71-95. DOI:10.1007/BF01170442
[45] J. O. Hirschfelder, C. F. Curtiss and R. B. Bird, Molecular theory of gases and liquids, John Wiley & Sons, New York 1954. [Zbl 0057.23402]
[46] L. H. Holway, New statistical models for kinetic theory: methods of construction, Phys. Fluids 9 (1966), 1658-1673. http://dx.doi.org/10.1063/1.1761920
[47] E. Ikenberry and C. Truesdell, On the pressures and the flux of energy in a gas according to Maxwell's kinetic theory, I, J. Rational Mech. Anal. 5 (1956), 1-54. [MR0075725]
[48] P. J. A. M. Kerkhof and M. A. M. Geboers, Towards a unified theory of isotropic molecular transport phenomena, A.I.Ch.E. Journal 51 (2005), 79-121. DOI: 10.1002/aic.10309
[49] P. J. A. M. Kerkhof and M. A. M. Geboers, Analysis and extension of the theory of multicomponent fluid diffusion, Chemical Engineering Science 60 (2005), 3129-3167. [doi:10.1016/j.ces.2004.12.042]
[50] M. N. Kogan, Rarefied gas dynamics, Plenum Press, New York 1969.
[51] S. Kosuge, K. Aoki and S. Takata, Shock-wave structure for a binary gas mixture: finite-difference analysis of the Boltzmann equation for hard-sphere molecules, Eur. J. Mech. B Fluids 20 (2001), 87-126. doi:10.1016/S0997-7546(00)00133-3
[52] G. M. Kremer, An introduction to the Boltzmann equation and transport processes in gases, Springer, Dordrecht 2010. [MR3237163]
[53] I-S. Liu, Method of Lagrange multipliers for exploitation of the entropy principle, Arch. Rational Mech. Anal. 46 (1972), 131-148. [MR0337164]
[54] I-S. Liu, Continuum mechanics, Springer-Verlag, Berlin 2002. [MR2010176]
[55] D. Madjarević and S. Simić, Shock structure in helium-argon mixture - A comparison of hyperbolic multi-temperature model with experiment, EPL (Europhysics Letters) 102 (2013), 44002. [doi:10.1209/0295-5075/102/44002]
[56] D. Madjarević, T. Ruggeri and S. Simić, Shock structure and temperature overshoot in macroscopic multi-temperature model of mixtures, Phys. Fluids 26 (2014), 106102. [ http://dx.doi.org/10.1063/1.4900517]
[57] R. Monaco, Shock-wave propagation in gas mixtures by means of a discrete velocity model of the Boltzmann equation, Acta Mech. 55 (1985), 239-251. [MR0803737]
[58] I. Müller, On the entropy inequality, Arch. Rational Mech. Anal. 26 (1967), 118-141. [MR0214336]
[59] I. Müller, A thermodynamic theory of mixtures of fluids, Arch. Rational Mech. Anal. 28 (1968), 1-39. [MR1553502]
[60] I. Müller and T. Ruggeri, Rational extended thermodynamics, 2nd ed., Springer-Verlag, New York 1998. [MR1632151]
[61] E. Nagnibeda and E. Kustova, Non-equilibrium reacting gas flows, Springer-Verlag, Berlin 2009. [MR2760667]
[62] A. Raines, Study of a shock wave structure in gas mixtures on the basis of the Boltzmann equation, Eur. J. Mech. B Fluids 21 (2002), no. 5, 599-610. [MR1937135]
[63] R. R. Remick and C. J. Geankoplis, Binary diffusion of gases in capillaries in the transition region between Knudsen and molecular diffusion, Ind. Eng. Chem. Fundamen. 12 (1973), 214-220. [DOI: 10.1021/i160046a012]
[64] T. Ruggeri and A. Strumia, Main field and convex covariant density for quasilinear hyperbolic systems. Relativistic fluid dynamics, Ann. Inst. H. Poincaré Sect. A (N.S.) 34 (1981), 65-84. [MR0605357]
[65] T. Ruggeri, Symmetric-hyperbolic system of conservative equations for a viscous heat conducting fluid, Acta Mech. 47 (1983), 167-183. [MR0709990]
[66] T. Ruggeri, Galilean invariance and entropy principle for systems of balance laws. The structure of extended thermodynamics, Contin. Mech. Thermodyn. 1 (1989), 3-20. [MR1001434]
[67] T. Ruggeri, The binary mixtures of Euler fluids: a unified theory of second sound phenomena, in "Continuum mechanics and applications in geophysics and the environment", B. Straughan, R. Greve, H. Ehrentraut and Y. Wang (eds.), 79-91, Springer-Verlag, Berlin 2001. [MR1882568]
[68] T. Ruggeri, Can constitutive relations be represented by non-local equations?, Quart. Appl. Math. 70 (2012), 597-611. [MR2986136]
[69] T. Ruggeri and S. Simić, On the hyperbolic system of a mixture of Eulerian fluids: a comparison between single- and multi-temperature models, Math. Methods Appl. Sci. 30 (2007), 827-849. [MR2310555]
[70] T. Ruggeri and S. Simić, Mixture of gases with multi-temperature: Maxwellian iteration, in "Asymptotic methods in nonlinear wave phenomena", T. Ruggeri and M. Sammartino (eds.), 186-194, World Sci. Publ., Hackensack, NJ 2007. [MR2370503]
[71] T. Ruggeri and S. Simić, Mixture of gases with multi-temperature: identification of a macroscopic average temperature, in "Mathematical Physics Models and Engineering Sciences", 455-465, Liguori Editore, Napoli 2008.
[72] T. Ruggeri and S. Simić, Average temperature and Maxwellian iteration in multitemperature mixtures of fluids, Phys. Rev. E 80 (2009), 026317. [DOI: 10.1103/PhysRevE.80.026317]
[73] F. Sherman, Shock-wave structure in binary mixtures of chemically inert perfect gases, J. Fluid Mech. 8 (1960), 465-480. [MR0116743]
[74] S. S. Simić, A note on shock profiles in dissipative hyperbolic and parabolic models, Publ. Inst. Math. (Beograd) (N.S.) 84(98) (2008), 97-107. [MR2488544]
[75] S.S. Simić, Shock structure in continuum models of gas dynamics: stability and bifurcation analysis, Nonlinearity 22 (2009), 1337-1366. [MR2507324]
[76] S. Simić, Shock structure in the mixture of gases: stability and bifurcation of equilibria, in "Thermodynamics - Kinetics of Dynamic Systems", Juan Carlos Moreno Piraján (ed.), 179-204, InTech (2011). [DOI: 10.5772/23109]
[77] Y. Sone, Molecular gas dynamics, Birkhäuser, Boston 2007. [MR2274674]
[78] H. Struchtrup, Macroscopic transport equations for rarefied gas flows, Springer, Berlin 2005. [MR2287368]
[79] R. Taylor and R. Krishna, Multicomponent mass transfer, John Wiley & Sons, New York 1993.
[80] C. Truesdell, Rational thermodynamics, McGraw-Hill Book Co., New York-London-Sydney 1969. [MR0366236]
[81] C. Villani, A review of mathematical topics in collisional kinetic theory, in "Hand-book of mathematical fluid dynamics", Vol. I, 71-305, S. Friedlander, D. Serre (eds.), North-Holland, Amsterdam 2002. [MR1942465]
[82] W. G. Vincenti and C. H. Kruger, Introduction to physical gas dynamics, John Wiley & Sons, New York 1967.
[83] W. Weiss, Continuous shock structure in extended thermodynamics, Phys. Rev. E 52 (1995), R5760-R5763. [DOI: 10.1103/PhysRevE.52.R5760]
[84] K. Xu, H. Liu and J. Jiang, Multiple-temperature kinetic model for continuum and near continuum flows, Phys. Fluids 19 (2007), 016101. [DOI:10.1063/1.2429037]
[85] Ya. B. Zel'dovich and Yu. P. Raizer, Physics of shock waves and high-temperature hydrodynamic phenomena, Vol. I, Academic Press, New York 1966.

Home Riv.Mat.Univ.Parma