**Matthew Greenberg**^{[1]} and **Marco Adamo Seveso**^{[2]}

*
Formal period integrals and special value formulas
*

**Pages:** 217-237

**Received:** 12 January 2016

**Accepted in revised form:** 1 March 2016

**Mathematics Subject Classification (2010):** 11F67, 11F33.

**Keywords:** Special values of \(L\)-functions, \(p\)-adic \(L\)-Functions.

**Author address:**

[1] : University of Calgary, 2500 University Drive N.W., Calgary, T2N 1N4, Alberta, Canada

[2] : Università degli Studi di Milano, Via Cesare Saldini 50, Milano, 20133, Italy

**Abstract:**
Motivated by the conjectures of Gan-Gross-Prasad, we develop a \(p\)-adic
formalism for placing these conjectures in a \(p\)-adic setting which is
suited for \(p\)-adic interpolation.

**References**

[1]
A. Ash and G. Stevens, *\(p\)-adic deformations of arithmetic cohomology*, submitted.

[2]
M. Bertolini and H. Darmon,
*Hida families and rational points on elliptic curves*,
Invent. Math. 168 (2007), no. 2, 371–431.
MR2289868

[3]
G. Chenevier, *Familles \(p\)-adiques de formes automorphes pour \(\mathbf{GL}_n\)*,
J. Reine Angew. Math. 570 (2004), 143–217.
MR2075765

[4]
M. Greenberg and M. A. Seveso,
*\(p\)-adic families of cohomological modualr forms for indefinite quaternion algebras and the Jacquet-Langlands correspondence*,
Canad. J. Math., to appear, DOI: 10.4153/CJM-2015-062-x.

[5]
M. Greenberg and M. A. Seveso,
*Triple product \(p\)-adic \(L\)-functions for balanced weights*, preprint.

[6]
M. Greenberg and M. A. Seveso,
*On the rationality of period integrals and special value formulas in the compact case*, preprint.

[7]
M. Greenberg, M. A. Seveso and S. Shahabi,
*Modular \(p\)-adic \(L\)-functions attached to real quadratic fields and arithmetic applications*,
J. Reine Angew. Math., to appear,
DOI: 10.1515/crelle-2014-0088.

[8]
B.~H. Gross, *Algebraic modular forms*,
Israel J. Math. 113 (1999), 61–93.
MR1729443

[9]
Y. Liu, *Refined Gan-Gross-Prasad conjecture for Bessel periods*,
J. Reine Angew. Math., to appear,
DOI: 10.1515/crelle-2014-0016.

[10]
M. A. Seveso,
*\(p\)-adic \(L\)-functions and the rationality of Darmon cycles*,
Canad. J. Math. 64 (2012), no. 5, 1122–1181.
MR2979580

[11]
J.-L. Waldspurger,
*Sur les valeurs de certaines fonctions \(L\) automorphes en leur centre de symétrie*,
Compositio Math. 54 (1985), no. 2, 173–242.
MR0783511

Home Riv.Mat.Univ.Parma