Riv. Mat. Univ. Parma, Vol. 7, No. 1, 2016

Federico Pellarin[1]

A note on multiple zeta values in Tate algebras

Pages: 71-100
Received: 27 January 2016
Accepted in revised form: 2 May 2016
Mathematics Subject Classification (2010): 11M38.
Keywords: Multiple zeta values, Carlitz module, \(A\)-harmonic sums.
Author address:
[1] : Institut Camille Jordan, UMR 5208 Site de Saint-Etienne, 23 rue du Dr. P. Michelon, 42023 Saint-Etienne, France

Abstract: In this note, we discuss a generalization of Thakur's multiple zeta values and allied objects, in the framework of function fields of positive characteristic and more precisely, of periods in Tate algebras.


[1] S. Akiyama and H. Ishikawa, On analytic continuation of multiple \(L\)-functions and related zeta functions, in ''Analytic number theory'', C. Jia and K. Matsumoto (eds.), Dev. Math., 6, Kluwer Acad. Publ., Dordrecht 2002, 1–16. MR1901971
[2] G. Anderson and D. Thakur, Tensor powers of the Carlitz module and zeta values, Ann. of Math. 132 (1990), 159-191. MR1059938
[3] B. Anglès and M. Ould Douh, Arithmetic of ''units'' in \(\mathbb{F}_q[T]\), Publ. Math. Besanηon Algèbre Thèorie Nr., 2012/2, 5–17. MR3074916
[4] B. Anglès, T. Ngo Dac and F. Tavares Ribeiro, Twisted characteristic \(p\) zeta functions, preprint (2016), arXiv:1603.04076
[5] B. Anglès and F. Pellarin, Functional identities for \(L\)-series values in positive characteristic, J. Number Theory 142 (2014), 223–251. MR3208400
[6] B. Anglès and F. Pellarin, Universal Gauss-Thakur sums and \(L\)-series, Invent. Math. 200 (2015), 653–669. MR3338012
[7] B. Anglès, F. Pellarin and F. Tavares Ribeiro, Arithmetic of positive characteristic \(L\)-series values in Tate algebras, Compos. Math. 152 (2016), no. 1, 1–61. MR3453387
[8] G. Böckle, The distribution of the zeros of the Goss zeta-function for \(A=\mathbb{F}_2[x,y]/(y^2+y+x^3+x+1)\), Math. Z. 275 (2013), 835–861. MR3127039
[9] F. Brown, Mixed Tate motives over \(\mathbb{Z}\), Ann. of Math. 175 (2012), 949–976. MR2993755
[10] L. Carlitz, On certain functions connected with polynomials in a Galois field, Duke Math. J. 1 (1935), 137–168. MR1545872
[11] C.-Y. Chang, Linear independence of monomials of multizeta values in positive characteristic, Compos. Math. 150 (2014), 1789–1808. MR3279257
[12] C.-Y. Chang, Linear relations among double zeta values in positive characteristic, preprint (2015), arXiv:1510.06519.
[13] C.-Y. Chang, M. Papanikolas and J. Yu, An effective criterion for Eulerian multizeta values in positive characteristic, preprint (2014), arXiv:1411.0124.
[14] C.-Y. Chang and J. Yu, Determination of algebraic relations among special zeta values in positive characteristic, Adv. Math. 216 (2007), 321–345. MR2353259
[15] F. Demeslay, Formule de classes en caractéristique positive, Thesis, Université de Basse Normandie, 2015. URL
[16] D. Goss, \(L\)-series of \(t\)-motives and Drinfel'd modules, in ''The Arithmetic of function fields'' (Columbus, OH, 1991), D. Goss, D. R. Hayes and M. I. Rosen (eds.), Ohio State Univ. Math. Res. Inst. Publ., 2, de Gruyter, Berlin 1992, 313–402. MR1196527
[17] D. Goss, Basic structures of function field arithmetic, Springer-Verlag, Berlin 1996. MR1423131
[18] M. Kaneko, Finite multiple zeta values (Japanese), RIMS Kôkyûroku Bessatsu, to appear.
[19] M. A. Papanikolas, Tannakian duality for Anderson-Drinfeld motives and algebraic independence of Carlitz logarithms, Invent. Math. 171 (2008), 123–174. MR2358057
[20] F. Pellarin, Aspects de l'indépendance algébrique en caractéristique non nulle, Séminaire Bourbaki, Vol. 2006/2007, Astérisque No. 317 (2008), Exp. No. 973, viii, 205–242. MR2487735
[21] F. Pellarin, Values of certain \(L\)-series in positive characteristic, Ann. of Math. 176 (2012), 2055–2093. MR2979866
[22] F. Pellarin and R. Perkins, On twisted \(A\)-harmonic sums and Carlitz finite zeta values, preprint (2015), arXiv:1512.05953.
[23] R. Perkins, Explicit formulae for \(L\)-values in positive characteristic, Math. Z. 278 (2014), no. 1-2, 279–299. MR3267579
[24] D. Thakur, Iwasawa theory and cyclotomic function fields, in ''Arithmetic geometry'' (Tempe, AZ, 1993), Contemp. Math., 174, Amer. Math. Soc., Providence, RI 1994, 157–165. MR1299741
[25] D. Thakur, Function field arithmetic, World Scientific Publishing Co., River Edge, NJ 2004. MR2091265
[26] D. Thakur, Relations between multizeta values for \(\mathbb{F}_q[t]\), Int. Math. Res. Not. IMRN 2009, no. 12, 2318–2346. MR2511913
[27] D. Thakur, Shuffle relations for function field multizeta values, Int. Math. Res. Not. IMRN 2010, no. 11, 1973–1980. MR2646351
[28] D. Thakur, Power sums of polynomials over finite fields and applications: a survey, Finite Fields Appl. 32 (2015), 171–191. MR3293409
[29] E. Thomas, On the zeta function for function fields over \(F_p\), Pacific J. Math. 107 (1983), 251–256. MR0701822

Home Riv.Mat.Univ.Parma