Riv. Mat. Univ. Parma, Vol. 7, No. 1, 2016

Alessandro Zaccagnini[1]

The Selberg integral and a new pair-correlation function for the zeros of the Riemann zeta-function

Pages: 133-151
Received: 31 December 2015
Accepted in revised form: 1 March 2016
Mathematics Subject Classification (2010): 11M26, 11N05.
Keywords: Riemann zeta-function, Selberg integral, Montgomery's pair-correlation function.
Author address:
[1] : Dipartimento di Matematica e Informatica, Università di Parma, Parco Area delle Scienze 53/a, Parma, 43124 Italia

This research was partially supported by the grant PRIN2010-11, Arithmetic Algebraic Geometry and Number Theory.

Abstract: The present paper is a report on joint work with Alessandro Languasco and Alberto Perelli, collected in [10], [11] and [12], on our recent investigations on the Selberg integral and its connections to Montgomery's pair-correlation function. We introduce a more general form of the Selberg integral and connect it to a new pair-correlation function, emphasising its relations to the distribution of prime numbers in short intervals.


[1] J. Brüdern, R. J. Cook and A. Perelli , The values of binary linear forms at prime arguments, Sieve methods, exponential sums and their application in number theory (Cardiff, 1995), G. R. H. Greaves et al., ed., Cambridge Univ. Press, Cambridge 1997, 87-100. MR1635730
[2] T. H. Chan , More precise pair correlation of zeros and primes in short intervals, J. London Math. Soc. (2) 68 (2003), no. 3, 579-598. MR2009438
[3] K. Ford and A. Zaharescu , On the distribution of imaginary parts of zeros of the Riemann zeta function, J. Reine Angew. Math. 579 (2005), 145-158. MR2124021
[4] D. A. Goldston , Notes on pair correlation of zeros and prime numbers, in "Recent perspectives in random matrix theory and number theory", F. Mezzadri and N. C. Snaith, eds., London Math. Soc. Lecture Note Ser., 322 , Cambridge University Press, Cambridge 2005, 79-110. MR2166459
[5] D. A. Goldston and D. R. Heath-Brown , A note on the differences between consecutive primes, Math. Ann. 266 (1984), no. 3, 317-320. MR0730173
[6] D. A. Goldston and H. L. Montgomery , Pair correlation of zeros and primes in short intervals, Analytic number theory and Diophantine problems (Stillwater, OK, 1984), A. C. Adolphson et al., ed., Progr. Math., 70 , Birkhäuser Boston, Boston, MA 1987, 183-203. MR1018376
[7] S. M. Gonek , An explicit formula of Landau and its applications to the theory of the zeta-function, Contemp. Math., 143 , Amer. Math. Soc., Providence, RI 1993, 395-413. MR1210528
[8] D. R. Heath-Brown , Gaps between primes, and the pair correlation of zeros of the zeta-function, Acta Arith. 41 (1982), 85-99. MR0667711
[9] D. R. Heath-Brown , The number of primes in a short interval, J. Reine Angew. Math. 389 (1988), 22-63. MR0953665
[10] A. Languasco, A. Perelli and A. Zaccagnini , Explicit relations between pair correlation of zeros and primes in short intervals, J. Math. Anal. Appl. 394 (2012), 761-771. MR2927496
[11] A. Languasco, A. Perelli and A. Zaccagnini , An extension of the pair-correlation conjecture and applications, Math. Res. Lett. 23 (2016), no. 1, 201-220. URL
[12] A. Languasco, A. Perelli and A. Zaccagnini , An extended pair-correlation conjecture and primes in short intervals, Trans. Amer. Math. Soc., to appear.
[13] J. E. Littlewood , Sur la distribution des nombres premiers, C. R. Math. Acad. Sci. Paris 158 (1914), 1869-1872.
[14] H. Maier , Primes in short intervals, Michigan Math. J. 32 (1985), 221-225. MR0783576
[15] H. L. Montgomery , The pair correlation of zeros of the zeta function, Analytic number theory (Proc. Sympos. Pure Math., Vol. XXIV, St. Louis Univ., St. Louis, Mo., 1972), Amer. Math. Soc., Providence, R.I. 1973, 181-193. MR0337821
[16] H. L. Montgomery and K. Soundararajan , Beyond pair correlation, Paul Erdos and his mathematics, I (Budapest, 1999), Bolyai Soc. Math. Stud., 11 , János Bolyai Math. Soc., Budapest 2002, 507-514. MR1954710
[17] H. L. Montgomery and R. C. Vaughan , Hilbert's inequality, J. London Math. Soc. (2) 8 (1974), 73-82. MR0337775
[18] H. L. Montgomery and R. C. Vaughan , Multiplicative number theory. I. Classical theory, Cambridge Univ. Press, Cambridge 2007. MR2378655
[19] M. R. Murty and A. Perelli , The pair correlation of zeros of functions in the Selberg class, Internat. Math. Res. Notices 1999, no. 10, 531-545. MR1692847
[20] J. Pintz , On the remainder term of the prime number formula and the zeros of the Riemann's zeta-function, Number Theory (Noordwijkerhout 1983), Lecture Notes in Math., 1068 , Springer, Berlin 1984, 186-197. MR0756094
[21] G. F. B. Riemann , Über die Anzahl der Primzahlen unter einer gegebenen Grösse, Monatsber. Königl. Preuss. Akad. Wiss. Berlin (1859), 671-680, in "Gesammelte Mathematische Werke" (ed. H. Weber), reprint, Dover Publications, New York 1953.
[22] B. Saffari and R. C. Vaughan , On the fractional parts of \(x/n\) and related sequences. II, Ann. Inst. Fourier 27 (1977), 1-30. MR0480388
[23] A. Selberg , On the normal density of primes in small intervals, and the difference between consecutive primes, Arch. Math. Naturvid. 47 (1943), 87-105. MR0012624
[24] A. Zaccagnini , Primes in almost all short intervals, Acta Arith. 84 (1998), no. 3, 225-244. MR1617735
[25] A. Zaccagnini , A conditional density theorem for the zeros of the Riemann zeta-function, Acta Arith. 93 (2000), no. 3, 293-301. MR1759919

Home Riv.Mat.Univ.Parma