Riv. Mat. Univ. Parma, to appear

Santiago R. Simanca[a],

Isometric embeddings I: General theory

Pages: 307-343
Received: 16 September 2016
Accepted: 7 November 2016
Mathematics Subject Classification (2010): Primary: 53C20, Secondary: 53C21, 53C25, 53C42, 57R40, 57R70.
Keywords: Immersions, embeddings, second fundamental form, mean curvature vector, critical point, canonically placed Riemannian manifold, shape of a homology class
Author address:
[a]:University of Miami, Department of Mathematics, Coral Gables, FL 33124, U.S.A.

Full Text (PDF)

Abstract: We consider critical points of the global squared \(L^2\)-norms of the second fundamental form, \(\Pi(M)\), and the mean curvature vector, \(\Psi(M)\), of isometric immersions of \((M,g)\) into a fixed background Riemannian manifold \((\tilde{M},\tilde{g})\) under deformations of the immersion. We use the critical points of \(\Pi\) to define canonical representatives of a given integer homology class of \(\tilde{M}\). With a suitable set of left-invariant metrics on \(Sp(2)\), we prove that any fiber of the fibration \(\mathbb{S}^3 \hookrightarrow Sp(2)\stackrel {\pi_{\circ}}{\rightarrow} \mathbb{S}^7\) is a totally geodesic canonical representative of the generator \(D\) of \(H_3(Sp(2);\mathbb{Z})\), and that this representative is unique up to isometries. For the nonrepresentable generator class of \(H_7(Sp(2);\mathbb{Z})\), we prove also that the absolute minimum of \(\Pi\) is achieved by immersed representatives that are not embedded. Finally, for the functional \(\Pi-\Psi\), we exhibit examples of background manifolds \((\tilde{M},\tilde{g})\) admitting isotopically equivalent critical hypersurfaces of distinct critical values.

To the memory of our beloved Gracie

References
[1]
W. Blaschke, Vorlesungen über Differentialgeometrie, III, Springer, Berlin, 1929.  zbMATH
[2]
C. Bohr, B. Hanke and D. Kotschick, Cycles, submanifolds, and structures on normal bundles, Manuscripta Math. 108 (2002), 483-494. MR1923535
[3]
E. Cartan, Familles des surfaces isoparamétriques dans les espaces à courbure constante, Ann. Mat. Pura Appl. 17 (1938), 177-191. MR1553310
[4]
J. Cheeger, Some examples of manifolds of nonnegative curvature, J. Differential Geometry 8 (1973), 623-628. MR0341334
[5]
J. Cheeger and D. G. Ebin, Comparison theorems in Riemannian geometry, North-Holand Publishing Co., Amsterdam, 1975. MR0458335
[6]
M. Dajczer, Submanifolds and Isometric Immersions, Math. Lecture Ser., 13, Publish or Perish, Houston, 1990. MR1075013
[7]
H. del Rio, W. Santos and S. R. Simanca, Low energy canonical immersions into hyperbolic manifolds and standard spheres, Publ. Mat. 61 (2017), 135-151. MR3590117
[8]
Z. Guo, H. Li and C. Wang, The second variational formula for Willmore submanifolds in \({\mathbb S}^n\), Results Math. 40 (2001), 205-225. MR1860369
[9]
R. Harvey and H. B. Lawson, Jr., Calibrated Geometries, Acta Math. 148 (1982), 47-157. MR0666108
[10]
W. Y. Hsiang, On compact homogeneous minimal submanifolds, Proc. Nat. Acad. Sci. U.S.A. 56 (1966), 5-6. MR0205203
[11]
H. B. Lawson, Jr., Lectures on minimal submanifolds, Vol. I, Mathematics Lecture Series, 9, Publish or Perish, Wilmington, Del., 1980. MR0576752
[12]
H. Li, Willmore hypersurfaces in a sphere, Asian J. Math. 5 (2001), 365-378. MR1868938
[13]
P. Li, Lecture notes on geometric analysis, Lecture Notes Ser., 6. Seoul National Univ., Seoul, 1993. MR1320504
[14]
K. Nomizu, Some results in E. Cartan's theory of isoparametric families of hypersurfaces, Bull. Amer. Math. Soc. 79 (1973) (6), 1184-1188. MR0326625
[15]
B. O'Neill, The fundamental equations of a submersion, Michigan Math. J. 13 (1966), 459-469. MR0200865
[16]
C.-K. Peng and C.-L. Terng, Minimal hypersurfaces of spheres with constant scalar curvature, in "Seminar on minimal submanifolds", Ann. of Math. Stud., 103, Princeton Univ. Press, Princeton, NJ, 1983, 177-198. MR0795235
[17]
R. Penrose, The road to reality, A complete guide to the laws of the universe, Alfred A. Knopf, New York, 2005. MR2116746
[18]
L. Randall and R. Sundrum, An alternative to compactification, Phys. Rev. Lett. 83 (1999), 4690-4693. MR1725958
[19]
R. C. Reilly, Variational properties of functions of the mean curvatures for hypersurfaces in space forms, J. Differential Geometry 8 (1973), 465-477. MR0341351
[20]
S. R. Simanca, Isometric embeddings II: Kähler background, preprint 2016.
[21]
S. R. Simanca, The \(L^2\)-norm of the second fundamental form of isometric immersions into a Riemannian manifold, preprint 2013, arXiv:1501.00164v1.
[22]
J. Simons, Minimal varieties in riemannian manifolds, Ann. of Math.(2) 88 (1968), 62-105. MR0233295
[23]
D. Sullivan, A homological characterization of foliations consisting of minimal surfaces, Comment. Math. Helv. 54 (1979), 218-223. MR0535056
[24]
D. Sullivan, René Thom's work on geometric homology and bordism, Bull. Amer. Math. Soc. (N.S.) 41 (2004), 341-350. MR2058291
[25]
H. Tasaki, Mass minimizing submanifolds with respect to some Riemannian metrics, J. Math. Soc. Japan 45 (1993), 77-87. MR1195684
[26]
R. Thom, Quelques propriétés globales des variétés différentiables, Comment. Math. Helv. 28 (1954), 17-86. MR0061823
[27]
G. Thomsen, über konforme Geometrie I: Grundlagen der konformen Flächentheorie, Hamb. Math. Abh. 3 (1923), 31-56.  zbMATH
[28]
T. J. Willmore, Note on embedded surfaces, An. Şti. Univ. "Al. I. Cuza" Iaşi Secţ. I a Mat. (N.S.) 11B (1965), 493-496. MR0202066


Home Riv.Mat.Univ.Parma