**Mohammad Eslamian
**^{[a]}

*Strong convergence of split equality variational inequality and fixed point problem
*

**Pages:**

**Received:** 16 June 2016

**Accepted in revised form:** 4 November 2016

**Mathematics Subject Classification (2010):** 47J25, 47N10, 65J15, 90C25.

**Keywords:** Split equality problem, fixed point, quasi-nonexpansive mapping, variational inequality.

**Author address:**

[a]:University of Science and Technology of Mazandaran, Department of Mathematics, Box: 48518-78195, Behshahr, Iran and
Institute for Research in Fundamental Science, School of Mathematics, (IPM) P.O.Box:19395-5746, Tehran, Iran

**Abstract:**
The main purpose of this paper is to introduce a new algorithm for finding a solution of split equality variational inequality problem for monotone and Lipschitz continuous operators and common fixed points of a finite family of quasi-nonexpansive mappings in the setting of infinite dimensional Hilbert spaces. Under suitable conditions, we prove that the sequence generated by the proposed new algorithm converges strongly to a solution of the split equality variational inequality and fixed point problem in Hilbert spaces. Our results improve and generalize some recent results in the literature.

**References**

[1]
B. P. N. Anh, * A hybrid extragradient method extended to fixed point problems and equilibrium problems.* Optimization. 62, 271-283 (2013).
Scopus

[2]
K. Aoyama, S. Iemoto, F. Kohsaka, W. Takahashi,* Fixed point and ergodic theorems for \(\lambda-\) hybrid mappings in Hilbert spaces.* J. Nonlinear Convex Anal. 11, 335-343 (2010).
MR2682871

[3]
H. Attouch, J.Bolte, P. Redont, A.Soubeyran, * Alternating proximal algorithms for weakly
coupled minimization problems. Applications to dynamical games and PDEs.* J. Convex Anal. 15, 485-506 (2008).
MR2431407

[4]
H. Attouch, A.Cabot, F.Frankel, J.Peypouquet, * Alternating proximal algorithms for constrained
variational inequalities. Application to domain decomposition for PDE’s*. Nonlinear Anal. 74, 7455-7473 (2011).
MR2833727

[5]
D.P. Bertsekas, E.M. Gafni, * Projection methods for variational inequalities with applications to the
traffic assignment problem*. Math. Progr. Study. 17, 139-159 (1982).
MR0654697

[6]
C. Byrne, * Iterative oblique projection onto convex sets and the split feasibility
problem*.Inverse Problem. 18, 441-453 (2002).
MR1910248

[7]
C. Byrne, * A unified treatment of some iterative algorithms in signal processing
and image reconstruction*. Inverse Problem. 20, 103-120 (2004).
MR2044608

[8]
Y. Censor, T. Bortfeld, B. Martin, A. Trofimov, * A unified approach for inversion problems in intensity-modulated
radiation therapy*. Phys. Med. Biol. 51, 2353-2365 (2006).
Scopus

[9]
Y. Censor, T. Elfving, * A multiprojection algorithms using Bragman
projection in a product space*. Numerical Algorithms. 8, 221-239 (1994).
MR1309222

[10]
Y. Censor, A.Gibali, S. Reich, * Algorithms for the split variational inequality problem*. Numerical Algorithms. 59 301-323 (2012).
MR2873136

[11]
Y. Censor, A. Segal, * The split common fixed point problem for directed operators*.
J. Convex Anal. 16, 587-600 (2009).
MR2559961

[12]
S.S. Chang, R.P. Agarwal, * Strong convergence theorems of general split equality problems for quasi-nonexpansive mappings*.
Journal of Inequalities and Applications, 2014, 2014:367.
MR3359099

[13]
S.S. Chang, J. Quan, J. Liu, * Feasible iterative algorithms and strong convergence
theorems for bi-level fixed point problems*. J. Nonlinear Sci. Appl. 9, 1515-1528 (2016).
MR3452653

[14]
C.E.Chidume, S.A.Mutangadura, * An example of the Mann iteration method for Lipschitz pseudocontractions*. Proc. Amer. Math. Soc. 129, 2359- 2363. (2001)
MR1823919

[15]
J. Deephoa, J. M. Moreno, P. Kumam, * A viscosity of Cesaro mean approximation method
for split generalized equilibrium, variational
inequality and fixed point problems*, J. Nonlinear Sci. Appl. 9, 1475-1496 (2016).
Scopus

[16]
Q. L. Dong, S. He, J. Zhao, * Solving the split equality problem without prior knowledge of operator norms*,
Optimization. 64, 1887-1906 (2015).
MR3361157

[17]
M. Eslamian, * Hybrid method for equilibrium problems and fixed point problems of finite families of nonexpansive
semigroups*. Rev. R. Accad. Cienc. Exactas Fis. Nat. Ser. A Math. RACSAM, 107, 299-307 (2013).
MR3199712

[18]
M. Eslamian, * General algorithms for split common fixed point problem of
demicontractive mappings*. Optimization. 65, 443-465 (2016).
MR3438119

[19]
M. Eslamian, A.Latif, * Strong convergence and split common fixed point
problem for set-valued operators*. J. Nonlinear Convex Anal. 17, 967-986 (2016).
MR3520698

[20]
M. Eslamian, J.Vahidi, * Split Common Fixed Point Problem of Nonexpansive Semigroup*. Mediterr. J. Math. 13, 1177-1195 (2016).
MR3513163

[21]
H. Iiduka, I. Yamada, * A use of conjugate gradient direction for the convex optimization problem
over the fixed point set of a nonexpansive mapping*. SIAM J. Optim. 19, 1881-1893(2009).
MR2486054

[22]
D.Kinderlehrer, G. Stampaccia, * An Iteration to Variational Inequalities and Their Applications*.
Academic Press, New York (1990).

[23]
F. Kohsaka, W. Takahashi, * Fixed point theorems for a class of nonlinear mappings related to maximal
monotone operators in Banach spaces*. Arch. Math. (Basel). 91, 166-177 (2008).
MR2430800

[24]
F. Kohsaka, W. Takahashi, * Existence and approximation of fixed points of firmly nonexpansive-type
mappings in Banach spaces*. SIAM J. Optim. 19, 824-835 (2008).
MR2448915

[25]
R. Kraikaew, S.Saejung, * On split common fixed point problems*. J. Math. Anal. Appl. 415, 513-524 (2014).
MR3178275

[26]
G. Lopez, V. Martìn-Marquez, F. Wang, H. K. Xu,* Solving the split feasibility problem without prior knowledge of matrix
norms*. Inverse Problem. 27, 085004 (2012).
MR2948743

[27]
D.A. Lorenz, F.S. Schopfer, S. Wenger, * The Linearized Bregman Method via Split Feasibility Problems: Analysis and
Generalizations*. SIAM J. Imajing science. 7, 1237-1262 (2014).
MR3215060

[28]
P. E. Mainge, * Strong convergence of projected subgradient methods for nonsmooth and nonstrictly
convex minimization}* Set-Valued Analysis, 16, 899-912 (2008).
MR2466027

[29]
P. E. Mainge, * A hybrid extragradient-viscosity method for monotone operators and fixed point problems*.
SIAM J. Control Optim. 47, 1499-1515 (2008).
MR2407025

[30]
A. Moudafi, * A relaxed alternating
CQ algorithm for convex feasibility problems*.
Nonlinear Anal. 79, 117-121 (2013).
MR3005031

[31]
A. Moudafi,* Alternating CQ-algorithm for convex feasibility and split fixed-point problems*.
J. Nonlinear Convex Anal. 15, 809-818 (2014).
MR3222909

[32]
A. Moudafi, E. Al-Shemas, * Simultaneous iterative methods for split equality problems and application*. Trans. Math.
Program. Appl., 1, 1-11 (2013).

[33]
P.M.Pardalos, T.M. Rassias, A.A.Khan, * Nonlinear Analysis and Variational Problems*. Springer, Berlin (2010).

[34]
R.T.Rockafellar, R.J-B.,Wets, * Variational Analysis*, 2nd printing. Springer, New York (2004).

[35]
Y. Shehu, O. S. Iyiola, C. D. Enyi, * An iterative algorithm for solving split feasibility
problems and fixed point problems in Banach spaces*. Numerical Algorithms. 72, 835-864 (2016).
MR3529823

[36]
Y. Shehu, F.U.Ogbuisi, O.S. Iyiola, * Convergence Analysis of an iterative algorithm for fixed
point problems and split feasibility problems in certain Banach spaces*. Optimization. 65, 299-323 (2016).
MR3438112

[37]
W. Takahashi, * Fixed point theorems for new nonlinear mappings in a Hilbert
space*. J. Nonlinear Convex Anal. 11, 79-88 (2010).
MR2729999

[38]
W. Takahashi, M. Toyoda, * Weak convergence theorems for nonexpansive mappings and monotone mappings*,
J. Optim. Theory Appl. 118, 417-428 (2003).
MR2006529

[39]
H. K. Xu, * Iterative algorithms for nonlinear operators*. J. Lond. Math. Soc. 66, 240-256 (2002).
MR1911872

[40]
H. K. Xu, * Iterative methods for split feasibility problem in infinite-dimensional Hilbert spaces*. Inverse Problem. 26, 105018
(2010).
MR271977

[41]
I. Yamada, * The hybrid steepest descent method for the variational inequality problem of the intersection of fixed
point sets of nonexpansive mappings*. Studies Comput. Math. 8, 473-504 (2001).
MR1853237

[42]
J. Zhao, * Solving split equality fixed-point problem of quasi-nonexpansive mappings without prior knowledge of operators norms*.
Optimization. 64, 2619-2630 (2015).
MR3411824

Home Riv.Mat.Univ.Parma