Riv. Mat. Univ. Parma, Vol. 10, No. 1, 2019

Mohammad Ashraf [a] and Bilal Ahmad Wani [a]

On derivations of rings and Banach algebras involving anti-commutator

Pages: 85-97
Received: 3 December 2018
Accepted in revised form: 18 March 2019
Mathematics Subject Classification (2010): 46J10, 16N20, 16N60, 16W25.
Keywords: Semiprime ring, derivation, maximal right ring of quotient, Banach algebra.
Authors address:
[a]: Department of Mathematics, Aligarh Muslim University, Aligarh-202002, India

Full Text (PDF)

Abstract: In the present paper we obtain commutativity of a semiprime ring \( \ \mathcal{R} \ \) which admits a derivation \(d\) such that either \( \ (d(x^m \circ y^n))^\ell \pm (x^p \circ_k y^q) = 0 \ \) for all \( \ x,y\in \mathcal{R} \ \) or \( \ (d(x^m) \circ d(y^n))^\ell \pm (x^p \circ_k y^q) = 0 \ \) for all \( \ x,y\in \mathcal{R} \ \), where \( \ m,n,p,q,k,\ell \ \) are fixed positive integers. Finally, we apply the above purely ring theoretic results to Banach algebras and obtain a noncommutative version of the Singer-Wermer theorem. In particular, we prove that if \( \ \mathfrak{B} \ \) is a noncommutative Banach algebra which admits a continuous linear derivation \(d:\mathfrak{B}\rightarrow \mathfrak{B}\) such that either \( \ (d(x^m \circ y^n))^\ell \pm (x^p \circ_k y^q)\in rad(\mathfrak{B}) \ \) or \( \ (d(x^m) \circ d(y^n))^\ell \pm (x^p \circ_k y^q)\in rad(\mathfrak{B}) \ \) for all \( \ x,y\in \mathfrak{B} \ \), where \( \ m,n,p,q,k,\ell \ \) are fixed positive integers, then \( \ d(\mathfrak{B})\subseteq rad(\mathfrak{B}) \ \).

References
[1]
M. Ashraf and N. Rehman, On commutativity of rings with derivations, Results Math. 42 (2002), 3-8. MR1934218
[2]
M. Ashraf, N. Rehman and M. A. Raza, A note on commutativity of semiprime Banach algebras, Beitr. Algebra Geom. 57 (2016), 553-560. MR3535065
[3]
N. Argaç and H. G. Inceboz, Derivations of prime and semiprime rings, J. Korean Math. Soc. 46 (2009), 997-1005. MR2549787
[4]
K. I. Beidar, W. S. Martindale III and A. V. Mikhalev, Rings with generalized identities, Monogr. Textbooks Pure Appl. Math., 196, Marcel Dekker, New York, 1996. MR1368853
[5]
H. E. Bell, On some commutativity theorems of Herstein, Arch. Math. (Basel) 24 (1973), 34-38. MR0320090
[6]
H. E. Bell and M. N. Daif, On derivations and commutativity in prime rings, Acta Math. Hungar. 66 (1995), 337-343. MR1314011
[7]
H. E. Bell and M. N. Daif, On commutativity and strong commutativity-preserving maps, Canad. Math. Bull. 37 (1994), 443-447. MR1303669
[8]
F. F. Bonsall and J. Duncan, Complete Normed Algebras, Springer-Verlag, New York-Heidelberg, 1973. MR0423029
[9]
M. Brešar, Commuting traces of biadditive mappings, commutativity-preserving mappings and Lie mappings, Trans. Amer. Math. Soc. 335 (1993), 525-546. MR1069746
[10]
C. L. Chuang, GPIs having coefficients in Utumi quotient rings, Proc. Amer. Math. Soc. 103 (1988), 723-728. MR0947646
[11]
C. L. Chuang, Hypercentral derivations, J. Algebra 166 (1994), 39-71. MR1276816
[12]
M. N. Daif and H. E. Bell, Remarks on derivations on semiprime rings, Internat. J. Math. Math. Sci. 15 (1992), 205-206. MR1143947
[13]
B. Dhara and R. K. Sharma, Vanishing powers values of commutators with derivations, Sib. Math. J. 50 (2009), 60-65. MR2502875
[14]
T. S. Erickson, W. S. Martindale III and J. M. Osborn, Prime nonassociative algebras, Pacific J. Math. 60 (1975), 49-63. MR0382379
[15]
I. N. Herstein, Topics in ring theory, Univ. of Chicago Press, Chicago-London, 1969. MR0271135
[16]
I. N. Herstein, Center-like elements in prime rings, J. Algebra 60 (1979), 567-574. MR0549949
[17]
N. Jacobson, Structure of rings, Colloquium Publications, 37, Amer. Math. Soc., Provindence, RI, 1956. MR0081264
[18]
B. E. Johnson and A. M. Sinclair, Continuity of derivations and a problem of Kaplansky, Amer. J. Math. 90 (1968), 1067-1073. MR0239419
[19]
V. K. Kharchenko, Differential identities of prime rings, Algebra Logic 17 (1979), 155-168. zbMATH
[20]
B. D. Kim, On the derivations of semiprime rings and noncommutative Banach algebras, Acta Math. Sin. (Engl. Ser.) 16 (2000), 21-28. MR1760520
[21]
C. Lanski, An Engel condition with derivation for left ideals, Proc. Amer. Math. Soc. 125 (1997), 339-345. MR1363174
[22]
T. K. Lee, Semiprime rings with differential identities, Bull. Inst. Math. Acad. Sinica 20 (1992), 27-38. MR1166215
[23]
T. K. Lee, Semiprime rings with hypercentral derivations, Canad. Math. Bull. 38 (1995), 445-449. MR1360594
[24]
W. S. Martindale III, Prime rings satisfying a generalized polynomial identity, J. Algebra 12 (1969), 576-584. MR0238897
[25]
J. H. Mayne, Centralizing mappings of prime rings, Canad. Math. Bull. 27 (1984), 122-126. MR0725261
[26]
K.-H. Park, On derivations in noncommutative semiprime rings and Banach algebras, Bull. Korean Math. Soc. 42 (2005), 671-678. MR2181155
[27]
E. C. Posner, Derivation in prime rings, Proc. Amer. Math. Soc. 8 (1957), 1093-1100. MR0095863
[28]
A. M. Sinclair, Continuous derivations on Banach algebras, Proc. Amer. Math. Soc. 20 (1969), 166-170. MR0233207
[29]
I. M. Singer and J. Wermer, Derivations on commutative normed algebras, Math. Ann. 129 (1955), 260-264. MR0070061
[30]
M. P. Thomas, The image of a derivation is contained in the radical, Ann. of Math. 128 (1988), 435-460. MR0970607
[31]
J. Vukman, A result concerning derivations in noncommutative Banach algebras, Glas. Mat. Ser. III 26 (1991), 83-88. MR1269177
[32]
J. Vukman, On derivations in prime rings and Banach algebras, Proc. Amer. Math. Soc. 116 (1992), 877-884. MR1072093


Home Riv.Mat.Univ.Parma