Riv. Mat. Univ. Parma, Vol. 10, No. 1, 2019

Mark Elin[a], Fiana Jacobzon[a] and Guy Katriel [a]

Linearization of holomorphic semicocycles in Banach spaces

Pages: 145-164
Received: 3 March 2019
Accepted in revised form: 2 July 2019
Mathematics Subject Classification (2010): Primary 37F99, Secondary 58D25, 46G20.
Keywords: Holomorphic mapping, generated semigroup, Cauchy problem, linearization problem.
Authors address:
[a]: Department of Mathematics, Ort Braude College, Karmiel 21982, Israel

Full Text (PDF)

Abstract: We consider holomorphic semicocycles on the open unit ball in a Banach space taking values in a Banach algebra (studied previously in [8,9]). We establish criteria for a semicocycle to be linearizable, that is, cohomologically equivalent to one independent of the spatial variable.

G. Almkvist, Stability of linear differential equations in Banach algebras, Math. Scand. 14 (1964), 39-44. MR0170224
F. Bracci, M. Elin and D. Shoikhet, Normal forms and linearization of holomorphic dilation type semigroups in several variables, J. Nonlinear Convex Anal. 12, (2011), 143-154. MR2816414
C. Chicone and Y. Latushkin, Evolution semigroups in dynamical systems and differential equations, Math. Surveys Monogr., 70, Amer. Math. Soc., Providence, RI, 1999. MR1707332
Ju. L. Daleckii and M. G. Krein, Stability of solutions of differential equations in Banach spaces, Amer. Math. Soc., Providence, RI, 1974. MR0352639
W. Desch and W. Schappacher, Linearized stability for nonlinear semigroups, in "Differential equations in Banach spaces", Lecture Notes in Math., 1223, Springer, Berlin, 1986, 61-73. MR0872517
N. Dunford and J. T. Schwartz, Linear Operators, Vol. I, Interscience Publ., New York, 1958. MR0117523
M. Elin, Extension operators via semigroups, J. Math. Anal. Appl. 377 (2011), 239-250. MR2754823
M. Elin, F. Jacobzon and G. Katriel, Noncommutative holomorphic semicocycles, Michigan Math. J. (2019), doi: 10.1307/mmj/1557302432.
M. Elin, F. Jacobzon and G. Katriel, Continuous and holomorphic semicocycles in Banach spaces, J. Evol. Equ. (2019), doi: 10.1007/s00028-019-00509-5.
M. Elin, S. Reich and D. Shoikhet, Complex dynamical systems and the geometry of domains in Banach spaces, Dissertationes Math. (Rozprawy Mat.) 427 (2004), 62 pp. MR2071666
M. Elin, S. Reich and D. Shoikhet, Numerical range of holomorphic mappings and applications, Birkhäuser/Springer, Cham, 2019. MR3890097
M. Elin and D. Shoikhet, Linearization models for complex dynamical systems. Topics in univalent functions, functional equations and semigroup theory, Birkhäuser Verlag, Basel, 2010. MR2683159
L. A. Harris, The numerical range of holomorphic functions in Banach spaces, Amer. J. Math. 93 (1971), 1005-1019. MR0301505
A. Katok and B. Hasselblatt, Introduction to the modern theory of dynamical systems, Encyclopedia Math. Appl., 54, Cambridge Univ. Press, 1995. MR1326374
W. König, Semicocycles and weighted composition semigroups on \(H^p\), Michigan Math. J. 37 (1990), 469-476. MR1077330
J. L. Massera and J. J. Schäffer, Linear differential equations and function spaces, Pure and Applied Mathematics, 21, Academic Press, New York-London, 1966. MR0212324
S. Reich and D. Shoikhet, Semigroups and generators on convex domains with the hyperbolic metric, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 8 (1997), 231-250. MR1631605
S. Reich and D. Shoikhet, Metric domains, holomorphic mappings and nonlinear semigroups, Abstr. Appl. Anal. 3 (1998), 203-228. MR1700285
S. Reich and D. Shoikhet, Nonlinear semigroups, fixed points, and the geometry of domains in Banach spaces, World Scientific Publisher, Imperial College Press, London, 2005. MR2022955

Home Riv.Mat.Univ.Parma