Riv. Mat. Univ. Parma, Vol. 10, No. 1, 2019
Mark Elin^{[a]}, Fiana Jacobzon^{[a]} and Guy Katriel ^{[a]}
Linearization of holomorphic semicocycles in Banach spaces
Pages: 145164
Received: 3 March 2019
Accepted in revised form: 2 July 2019
Mathematics Subject Classification (2010): Primary 37F99, Secondary 58D25, 46G20.
Keywords: Holomorphic mapping, generated semigroup, Cauchy problem, linearization problem.
Authors address:
[a]: Department of Mathematics, Ort Braude College, Karmiel 21982, Israel
Full Text (PDF)
Abstract:
We consider holomorphic semicocycles on the open unit ball in a Banach space taking
values in a Banach algebra (studied previously in [8,9]).
We establish criteria for a semicocycle to be linearizable, that is,
cohomologically equivalent to one independent of the spatial variable.
References
 [1]

G. Almkvist,
Stability of linear differential equations in Banach algebras,
Math. Scand. 14 (1964), 3944.
MR0170224
 [2]

F. Bracci, M. Elin and D. Shoikhet,
Normal forms and linearization of holomorphic dilation type semigroups in several variables,
J. Nonlinear Convex Anal. 12, (2011), 143154.
MR2816414
 [3]

C. Chicone and Y. Latushkin,
Evolution semigroups in dynamical systems and differential equations,
Math. Surveys Monogr., 70, Amer. Math. Soc., Providence, RI, 1999.
MR1707332
 [4]

Ju. L. Daleckii and M. G. Krein,
Stability of solutions of differential equations in Banach spaces,
Amer. Math. Soc., Providence, RI, 1974.
MR0352639
 [5]

W. Desch and W. Schappacher,
Linearized stability for nonlinear semigroups,
in "Differential equations in Banach spaces",
Lecture Notes in Math., 1223, Springer, Berlin, 1986, 6173.
MR0872517
 [6]

N. Dunford and J. T. Schwartz,
Linear Operators, Vol. I,
Interscience Publ., New York, 1958.
MR0117523
 [7]

M. Elin,
Extension operators via semigroups,
J. Math. Anal. Appl. 377 (2011), 239250.
MR2754823
 [8]

M. Elin, F. Jacobzon and G. Katriel,
Noncommutative holomorphic semicocycles,
Michigan Math. J. (2019), doi: 10.1307/mmj/1557302432.
 [9]

M. Elin, F. Jacobzon and G. Katriel,
Continuous and holomorphic semicocycles in Banach spaces,
J. Evol. Equ. (2019), doi: 10.1007/s00028019005095.
 [10]

M. Elin, S. Reich and D. Shoikhet,
Complex dynamical systems and the geometry of domains in Banach spaces,
Dissertationes Math. (Rozprawy Mat.) 427 (2004), 62 pp.
MR2071666
 [11]

M. Elin, S. Reich and D. Shoikhet,
Numerical range of holomorphic mappings and applications,
Birkhäuser/Springer, Cham, 2019.
MR3890097
 [12]

M. Elin and D. Shoikhet,
Linearization models for complex dynamical systems. Topics in univalent functions, functional equations and semigroup theory,
Birkhäuser Verlag, Basel, 2010.
MR2683159
 [13]

L. A. Harris,
The numerical range of holomorphic functions in Banach spaces,
Amer. J. Math. 93 (1971), 10051019.
MR0301505
 [14]

A. Katok and B. Hasselblatt,
Introduction to the modern theory of dynamical systems,
Encyclopedia Math. Appl., 54,
Cambridge Univ. Press, 1995.
MR1326374
 [15]

W. König,
Semicocycles and weighted composition semigroups on \(H^p\),
Michigan Math. J. 37 (1990), 469476.
MR1077330
 [16]

J. L. Massera and J. J. Schäffer,
Linear differential equations and function spaces,
Pure and Applied Mathematics, 21, Academic Press, New YorkLondon, 1966.
MR0212324
 [17]

S. Reich and D. Shoikhet,
Semigroups and generators on convex domains with the hyperbolic metric,
Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 8 (1997), 231250.
MR1631605
 [18]

S. Reich and D. Shoikhet,
Metric domains, holomorphic mappings and nonlinear semigroups,
Abstr. Appl. Anal. 3 (1998), 203228.
MR1700285
 [19]

S. Reich and D. Shoikhet,
Nonlinear semigroups, fixed points, and the geometry of domains in Banach spaces,
World Scientific Publisher, Imperial College Press, London, 2005.
MR2022955
Home Riv.Mat.Univ.Parma