Riv. Mat. Univ. Parma, Vol. 10, No. 2, 2019
Gabriella Puppo ^{[a]}
Kinetic models of BGK type and their numerical integration
Pages: 299349
Received: 11 February 2019
Accepted in revised form: 15 October 2019
Mathematics Subject Classification (2010): 82B40, 81T80, 65Z05.
Keywords: Kinetic models, Multifluids mixtures, Asymptotic Preserving schemes.
Authors address:
[a]: La Sapienza Università di Roma, Roma, Italy
Full Text (PDF)
Abstract:
This minicourse contains a description of recent results on the modelling of rarefied gases in weakly non equilibrium regimes,
and the numerical methods used to approximate the resulting equations. Therefore this work focuses on BGK type approximations,
rather than on full Boltzmann models. Within this framework, models for polyatomic gases and for mixtures will be considered.
We will also address numerical issues characteristic of the difficulties one encounters when integrating kinetic equations.
In particular, we will consider asymptotic preserving schemes, which are designed to approximate equilibrium solutions,
without resolving the fast scales of the approach to equilibrium.
References
 [1]

A. Alaia,
A time dependent domain decomposition method for a multiscale hydrodynamickinetic system of equations,
PhD Thesis, Dipartimento di Matematica, Politecnico di Torino, 2011.
 [2]

A. Alaia and G. Puppo,
A hybrid method for hydrodynamickinetic flow  Part II  Coupling of hydrodynamic and kinetic models,
J. Comput. Phys. 231 (2012), 52175242.
MR2942679
 [3]

P. Andries, K. Aoki and B. Perthame,
A consistent BGKtype model for gas mixtures,
J. Statist. Phys. 106 (2002), 9931018.
MR1889599
 [4]

P. Andries, P. Le Tallec, J.P. Perlat and B. Perthame,
The GaussianBGK model of Boltzmann equation with small Prandtl number,
Eur. J. Mech. B Fluids 19 (2000), 813830.
MR1803856
 [5]

P. Andries and B. Perthame,
The ESBGK model equation with correct Prandtl number,
Rarefied Gas Dynamics: 22nd International Symposium, AIP Conference Proceedings 585 (2001), 3036.
DOI
 [6]

U. M. Ascher, S. J. Ruuth and R. J. Spiteri,
Implicitexplicit RungeKutta methods for timedependent partial differential equations,
Appl. Numer. Math. 25 (1997), 151167.
MR1485812
 [7]

C. Baranger, M. Bisi, S. Brull and L. Desvillettes,
On the ChapmanEnskog asymptotics for a mixture of monoatomic and polyatomic rarefied gases,
Kinet. Relat. Models 11 (2018), 821858.
MR3810848
 [8]

N. Bellomo, G. Ajmone Marsan and A. Tosin,
Complex Systems and Society: Modeling and Simulation,
Springer, New York, 2013.
MR3087552
 [9]

M. Bennoune, M. Lemou and L. Mieussens,
Uniformly stable numerical schemes for the Boltzmann equation preserving the compressible NavierStokes asymptotics,
J. Comput. Phys. 227 (2008), 37813803.
MR2403867
 [10]

F. Bernard, A. Iollo and G. Puppo,
A local velocity grid approach for the BGK equation,
Commun. Comput. Phys. 16 (2014), 956982.
MR3249075
 [11]

F. Bernard, A. Iollo and G. Puppo,
Accurate asymptotic preserving boundary conditions for kinetic equations on Cartesian grids,
J. Sci. Comput. 65 (2015), 735766.
MR3411286
 [12]

F. Bernard, A. Iollo and G. Puppo,
BGK polyatomic model for rarefied flows,
J. Sci. Comput. 78 (2019), 18931916.
MR3934691
 [13]

P. L. Bhatnagar, E. P. Gross and M. Krook,
A model for collision processes in gases. I. Small amplitude processes in charged and neutral onecomponent systems,
Phys. Rev. 94 (1954), 511525.
DOI
 [14]

M. Bisi and M. J. Cáceres,
A BGK relaxation model for polyatomic gas mixtures,
Commun. Math. Sci. 14 (2016), 297325.
MR3436242
 [15]

M. Bisi, M. Groppi and G. Spiga,
Kinetic BhatnagarGrossKrook model for fast reactive mixtures and its hydrodynamic limit,
Phys. Rev. E 81 (2010), 036327, 9 pp.
DOI
 [16]

A. Bobylev, M. Bisi, M. Groppi, G. Spiga and I. Potapenko,
A general consistent BGK model for gas mixtures,
Kinet. Relat. Models 11 (2018), 13771393.
MR3815148
 [17]

S. Boscarino, G. Russo and M. Semplice,
High order finite volume schemes for balance laws with stiff relaxation,
Comput. & Fluids 169 (2018), 155168.
MR3811039
 [18]

S. Brull,
An ellipsoidal statistical model for gas mixtures,
Commun. Math. Sci. 13 (2015), 113.
MR3238136
 [19]

S. Brull, V. Pavan and J. Schneider,
Derivation of a BGK model for mixtures,
Eur. J. Mech. B Fluids 33 (2012), 7486.
MR2896732
 [20]

S. Brull and J. Schneider,
On the ellipsoidal statistical model for polyatomic gases,
Contin. Mech. Thermodyn. 20 (2009), 489508.
MR2511807
 [21]

M. H. Carpenter and C. Kennedy,
Additive RungeKutta schemes for convectiondiffusionreaction equations,
Appl. Numer. Math. 44 (2003), 139181.
MR1951292
 [22]

C. Cercignani,
The Boltzmann equation and its applications,
Appl. Math. Sci., 67, SpringerVerlag, New York, 1988.
MR1313028
 [23]

C. Cercignani,
Rarefied gas dynamics: From basic concepts to actual calculations,
Cambridge Texts Appl. Math., Cambridge University Press, Cambridge, 2000.
MR1744523
 [24]

S. Chapman and T. G. Cowling,
The mathematical theory of nonuniform gases: An account of the kinetic theory of viscosity, thermal conduction and diffusion in gases,
Cambridge Mathematical Library, Cambridge University Press, London, 1970.
MR0258399
 [25]

C. K. Chu,
Kinetictheoretic description of the formation of a shock wave,
Phys. Fluids 8 (1965), 1222.
DOI
 [26]

F. Coron and B. Perthame,
Numerical passage from kinetic to fluid equations,
SIAM J. Numer. Anal. 28 (1991), 2642.
MR1083323
 [27]

I. Cravero, G. Puppo, M. Semplice and G. Visconti,
CWENO: uniformly accurate reconstructions for balance laws,
Math. Comp. 87 (2018), 16891719.
MR3787389
 [28]

A. Crestetto, N. Crouseilles and M. Lemou,
Kinetic/fluid micromacro numerical schemes for VlasovPoissonBGK equation using particles,
Kinet. Relat. Models 5 (2012), 787816.
MR2997591
 [29]

A. Crestetto, C. Klingenberg and M. Pirner,
Kinetic/fluid micromacro numerical scheme for a two component plasma,
arXiv:1806.11485, preprint, 2018.
 [30]

G. Dimarco and L. Pareschi,
Asymptotic preserving implicitexplicit RungeKutta methods for nonlinear kinetic equations,
SIAM J. Numer. Anal. 51 (2013), 10641087.
MR3036998
 [31]

G. Dimarco and L. Pareschi,
Numerical methods for kinetic equations,
Acta Numer. 23 (2014), 369520.
MR3202241
 [32]

F. Filbet and S. Jin,
A class of asymptoticpreserving schemes for kinetic equations and related problems with stiff sources,
J. Comput. Phys. 229 (2010), 76257648.
MR2674294
 [33]

F. Filbet and S. Jin,
An asymptotic preserving scheme for the ESBGK model of the Boltzmann equation,
J. Sci. Comput. 46 (2011), 204224.
MR2753243
 [34]

F. Filbet and C. Yang,
An inverse LaxWendroff method for boundary conditions applied to Boltzmann type models,
J. Comput. Phys. 245 (2013), 4361.
MR3066198
 [35]

I. M. Gamba and S. H. Tharkabhushanam,
SpectralLagrangian methods for collisional models of nonequilibrium statistical states,
J. Comput. Phys. 228 (2009), 20122036.
MR2500671
 [36]

V. Garzó, A. Santos and J. J. Brey,
A kinetic model for a multicomponent gas,
Phys. Fluids A 1 (1989), 380383.
DOI
 [37]

F. Golse,
Fluid dynamic limits of the kinetic theory of gases,
in ''From particle systems to partial differential equations'',
Springer Proc. Math. Stat., 75, Springer, Heidelberg, 2014, 391.
MR3213476
 [38]

M. Groppi, S. Monica and G. Spiga,
A kinetic ellipsoidal BGK model for a binary gas mixture,
Europhys. Lett. EPL 96 (2011), 64002, 6 pp.
DOI
 [39]

M. Groppi and G. Spiga,
An ESBGK model for the kinetic analysis of a chemically reacting gas mixture,
MATCH Commun. Math. Comput. Chem. 69 (2013), 197214.
MR3086379
 [40]

M. Herty, G. Puppo, S. Roncoroni and G. Visconti,
The BGK approximation of kinetic models for traffic,
arXiv:1812.11056, preprint, 2018.
 [41]

L. H. Holway, Jr.,
Kinetic theory of shock structure using an ellipsoidal distribution function,
in ''Rarefied Gas Dynamics'', Vol. I (Proc. Fourth Internat. Sympos., Univ. Toronto, 1964),
Academic Press, New York, 1966, 193215.
MR0204022
 [42]

J. Hu, S. Jin and Q. Li,
Asymptoticpreserving schemes for multiscale hyperbolic and kinetic equations,
Handb. Numer. Anal., 18, Elsevier/NorthHolland, Amsterdam, 2017, 103129.
MR3645390
 [43]

S. Jin,
Asymptotic preserving (AP) schemes for multiscale kinetic and hyperbolic equations: a review,
Riv. Mat. Univ. Parma 3 (2012), 177216.
MR2964096
 [44]

S. Jin and Q. Li,
A BGKpenalizationbased asymptoticpreserving scheme for the multispecies Boltzmann equation,
Numer. Methods Partial Differential Equations 29 (2013), 10561080.
MR3039801
 [45]

S. Jin and Y. Shi,
A micromacro decompositionbased asymptoticpreserving scheme for the multispecies Boltzmann equation,
SIAM J. Sci. Comput. 31 (2010), 45804606.
MR2594994
 [46]

C. Klingenberg and M. Pirner,
Existence, uniqueness and positivity of solutions for BGK models for mixtures,
J. Differential Equations 264 (2018), 702727.
MR3720827
 [47]

C. Klingenberg, M. Pirner and G. Puppo,
A consistent kinetic model for a twocomponent mixture with an application to plasma,
Kinet. Relat. Models 10 (2017), 445465.
MR3579578
 [48]

C. Klingenberg, M. Pirner and G. Puppo,
A consistent kinetic model for a twocomponent mixture of polyatomic molecules,
Commun. Math. Sci. 17 (2019), 149173.
MR3960644
 [49]

R. J. LeVeque,
Finite volume methods for hyperbolic problems,
Cambridge Texts Appl. Math., Cambridge University Press, Cambridge, 2002.
MR1925043
 [50]

S. Liu, P. Yu, K. Xu and C. Zhong,
Unified gaskinetic scheme for diatomic molecular simulations in all flow regimes,
J. Comput. Phys. 259 (2014), 96113.
MR3148561
 [51]

L. Mieussens,
Discrete velocity model and implicit scheme for the BGK equation of rarefied gas dynamics,
Math. Models Methods Appl. Sci. 10 (2000), 11211149.
MR1792255
 [52]

L. Mieussens,
Discretevelocity models and numerical schemes for the BoltzmannBGK equation in plane and axisymmetric geometries,
J. Comput. Phys. 162 (2000), 429466.
MR1774264
 [53]

L. Pareschi and G. Russo,
ImplicitExplicit RungeKutta schemes and applications to hyperbolic systems with relaxation,
J. Sci. Comput. 25 (2005), 129155.
MR2231946
 [54]

L. Pareschi and G. Toscani,
Interacting Multiagent Systems: Kinetic equations and Monte Carlo methods,
Oxford University Press, 2013.
 [55]

S. Pieraccini and G. Puppo,
ImplicitExplicit schemes for BGK kinetic equations,
J. Sci. Comput. 32 (2007), 128.
MR2320557
 [56]

S. Pieraccini and G. Puppo,
Microscopically implicitmacroscopically explicit schemes for the BGK equation,
J. Comput. Phys. 231 (2012), 299327.
MR2872077
 [57]

M. Pirner,
Existence and uniqueness of mild solutions for BGK models for gas mixtures of polyatomic molecules,
arXiv:1806.10603, preprint, 2018.
 [58]

I. Prigogine,
A Boltzmannlike approach to the statistical theory of traffic flow,
in ''Theory of traffic flow'', R. Herman, ed., Elsevier, Amsterdam, 1961, 158164.
MR0134344
 [59]

J. Schneider,
A wellposed simulation model for multicomponent reacting gases,
Commun. Math. Sci. 13 (2015), 10751103.
MR3344419
 [60]

Yu. G. Semyonov, S. F. Borisov and P. E. Suetin,
Investigation of heat transfer in rarefied gases over a wide range of Knudsen numbers,
Int. J. Heat Mass Transfer 27 (1984), 17891799.
DOI
 [61]

C. W. Shu,
Essentially nonoscillatory and weighted essentially nonoscillatory schemes for hyperbolic conservation laws,
in ''Advanced numerical approximation of nonlinear hyperbolic equations'' (Cetraro, 1997),
Lecture Notes in Math., 1697, Springer, Berlin, 1998, 325432.
MR1728856
 [62]

J. Stoer and R. Bulirsch,
Introduction to numerical analysis,
Texts Appl. Math., 12, Springer Verlag, New York, 2002.
MR1923481
 [63]

C. Tantos, D. Valougeorgis, M. Pannuzzo, A. Frezzotti and G. L. Morini,
Conductive heat transfer in a rarefied polyatomic gas confined between coaxial cylinders,
Int. J. Heat Mass Transfer 79 (2014), 378389.
DOI
Home Riv.Mat.Univ.Parma