Riv. Mat. Univ. Parma, Vol. 12, No. 1, 2021

Kevin Ford [a]

Large prime gaps and progressions with few primes

Pages: 41-47
Received: August 3, 2019
Accepted in revised form: February 19, 2020
Mathematics Subject Classification (2010): Primary: 11N05, 11N13; Secondary 11M20.
Keywords: Primes, prime gaps, primes in progressions, exceptional zero, exceptional character.
Author address:
[a]: Department of Mathematics, University of Illinois, 1409 West Green St, Urbana, IL 61801, USA.

The author was supported by National Science Foundation grant DMS-1802139.

Full Text (PDF)

Abstract: We show that the existence of arithmetic progressions with few primes, with a quantitative bound on ''few'', implies the existence of larger gaps between primes less than \(x\) than is currently known unconditionally. In particular, we derive this conclusion if there are certain types of exceptional zeros of Dirichlet \(L\)-functions.

References
[1]
R. C. Baker, G. Harman and J. Pintz, The difference between consecutive primes, II, Proc. London Math. Soc. (3) 83 (2001), no. 3, 532-562. MR1851081
[2]
W. Banks, K. Ford and T. Tao, Large prime gaps and probabilistic models, arXiv:1908.08613, preprint, 2019.
[3]
H. Cramér, Some theorems concerning prime numbers, Ark. Mat. Astr. Fys. 15 (1920), no. 5, 1-33.
[4]
H. Cramér, On the order of magnitude of the difference between consecutive prime numbers, Acta Arith. 2 (1936), no. 1, 23-46. Article
[5]
H. Davenport, Multiplicative number theory, 3rd ed., Grad. Texts in Math., 74, Springer-Verlag, New York, 2000. MR1790423
[6]
K. Ford, B. Green, S. Konyagin, J. Maynard and T. Tao, Long gaps between primes, J. Amer. Math. Soc. 31 (2018), no. 1, 65-105. MR3718451
[7]
J. Friedlander and H. Iwaniec, Opera de cribro, Amer. Math. Soc. Colloq. Publ., 57, AMS, Providence, RI, 2010. MR2647984
[8]
P. X. Gallagher, A large sieve density estimate near \(\sigma=1\), Invent. Math. 11 (1970), 329-339. MR0279049
[9]
A. Granville, Harald Cramér and the distribution of prime numbers, Harald Cramér Symposium (Stockholm, 1993), Scand. Actuar. J. 1995 (1955), no. 1, 12-28. MR1349149  |  DOI
[10]
D. R. Heath-Brown, Prime twins and Siegel zeros, Proc. London Math. Soc. (3) 47 (1983), no. 2, 193-224. MR0703977
[11]
H. Iwaniec, On the error term in the linear sieve, Acta Arith. 19 (1971), 1-30. MR0296043
[12]
H. Iwaniec, Conversations on the exceptional character, in ''Analytic number theory'', Lecture Notes in Math., 1891, Springer, Berlin, 2006, 97-132. MR2277659
[13]
J. Li, K. Pratt and G. Shakan, A lower bound for the least prime in an arithmetic progression, Q. J. Math. 68 (2017), no. 3, 729-758. MR3698292
[14]
Yu. V. Linnik, On the least prime in an arithmetic progression, II, The Deuring-Heilbronn phenomenon, Rec. Math. (Math. Sbornik), N. S. 15(57) (1944), 347-368. MR0012112
[15]
C. Pomerance, A note on the least prime in an arithmetic progression, J. Number Theory 12 (1980), no. 2, 218-223. MR0578815
[16]
D. Shanks, On maximal gaps between successive primes, Math. Comp. 18 (1964), 646-651. MR0167472
[17]
T. Xylouris, On the least prime in an arithmetic progression and estimates for the zeros of Dirichlet L-functions, Acta Arith. 150 (2011), no. 1, 65-91. MR2825574
[18]
T. Xylouris, Über die Nullstellen der Dirichletschen \(L\)-Funktionen und die kleinste Primzahl in einer arithmetischen Progression, (German) [The zeros of Dirichlet \(L-\)functions and the least prime in an arithmetic progression], Dissertation for the degree of Doctor of Mathematics and Natural Sciences at the University of Bonn, Bonn, 2011. Bonner Math. Schriften [Bonn Math. Publications], 404, Universität Bonn, Mathematisches Institut, Bonn, 2011. MR3086819


Home Riv.Mat.Univ.Parma