Riv. Mat. Univ. Parma, Vol. 14, No. 1, 2023
Alexander E. Patkowski
On Davenport expansions, Popov's formula and Fine's query
Pages: 5965
Received: 19 April 2022
Accepted in revised form: 27 July 2022
Mathematics Subject Classification: 11L20, 11M06.
Keywords: Davenport expansions; Riemann zeta function; von Mangoldt function.
Full Text (PDF)
Abstract:
We establish an explicit connection between a Davenport expansion and the Popov sum.
Asymptotic analysis follows as a result of these formulas.
New solutions to a query of N. J. Fine are offered, and a proof of Davenport expansions is detailed.
References
 [1]

P. T. Bateman and S. Chowla,
Some special trigonometric series related to the distribution of prime numbers,
J. London Math. Soc. 38 (1963), 372374.
MR0153639
 [2]

K. Chakraborty, S. Kanemitsu and H. Tsukada,
Arithmetical Fourier series and the modular relation,
Kyushu J. Math. 66 (2012), no. 2, 411427.
MR3051345
 [3]

H. Davenport,
On some infinite series involving arithmetic function,
Quart. J. Math. Oxford Ser. 8 (1937), no. 1, 813.
DOI
Zbl
 [4]

H. Davenport,
On some infinite series involving arithmetical functions II,
Quart. J. Math. Oxford Ser. 8 (1937), no. 1, 313320.
DOI
Zbl
 [5]

H. M. Edwards,
Riemann's Zeta function,
Reprint of the 1974 original, Dover Publications, Mineola, NY, 2001.
MR1854455
 [6]

I. S. Gradshteyn and I. M. Ryzhik,
Table of integrals, series, and products, 7th edition,
A. Jeffrey and D. Zwillinger, eds., Elsevier/Academic Press, Amsterdam, 2007.
MR2360010
 [7]

S. Inoue,
Relations among some conjectures on the Möbius function and the Riemann zetafunction,
Acta Arith. 191 (2019), no. 1, 132
MR3998979
 [8]

S. Jaffard,
On Davenport expansions,
in "Fractal geometry and applications: a jubilee of Benoît Mandelbrot",
Proc. Sympos. Pure Math., 72, Part 1, Amer. Math. Soc., Providence, RI, 2004, 273303.
MR2112109
 [9]

H. L. Li, J. Ma and W. P. Zhang,
On some Diophantine Fourier series,
Acta Math. Sin. (Engl. Ser.) 26 (2010), no. 6, 11251132.
MR2644050
 [10]

R. B. Paris and D. Kaminski,
Asymptotics and MellinBarnes Integrals,
Cambridge University Press, Cambridge, 2001.
MR1854469
 [11]

A. E. Patkowski,
On Popov's formula involving the von Mangoldt function,
Pi Mu Epsilon J. 15 (2019), no. 1, 4547.
MR4263971
 [12]

A. I. Popov,
Several series containing primes and roots of \(\zeta(s)\),
C. R. (Doklady) Acad. Sci. URSS (N.S.) 41 (1943), 362363.
MR0010581
 [13]

O. Ramaré,
Explicit estimates for the summatory function of \(\Lambda(n)/n\) from the one of \(\Lambda(n)\),
Acta Arith. 159 (2013), no. 2, 113122.
MR3062910
 [14]

S. L. Segal,
On an identity between infinite series of arithmetic functions,
Acta Arith. 28 (1975/76), no. 4, 345348.
MR0387222
 [15]

E. C. Titchmarsh,
The theory of the Riemann zetafunction, 2nd edition,
Oxford University Press, New York, 1986.
MR0882550
Home Riv.Mat.Univ.Parma