Riv. Mat. Univ. Parma, Vol. 14, No. 1, 2023

Fiammetta Battaglia [a] and Elisa Prato [a]

Nonrational polytopes and fans in toric geometry

Pages: 67-86
Received: 2 May 2022
Accepted in revised form: 16 January 2023
Mathematics Subject Classification: 14M25, 52B20, 53D20.
Keywords: Toric variety, nonrational convex polytope, nonrational fan.
Authors address:
[a]: Università degli Studi di Firenze, Dipartimento di Matematica e Informatica "U. Dini", Firenze, 50134, Italy

This research was partially supported by the PRIN Project "Real and Complex Manifolds: Topology, Geometry and Holomorphic Dynamics" (MIUR, Italy) and by GNSAGA (INdAM, Italy).

Full Text (PDF)

Abstract: First, we examine the notion of nonrational convex polytope and nonrational fan in the context of toric geometry. We then discuss and interrelate some recent developments in the subject.

M. F. Atiyah, Convexity and commuting Hamiltonians, Bull. London Math. Soc. 14 (1982), 1-15. MR0642416
M. Audin, The topology of torus actions on symplectic manifolds, Progr. Math., 93, Birkhäuser Verlag, Basel, 1991. MR1106194
F. Battaglia, Convex polytopes and quasilattices from the symplectic viewpoint, Comm. Math. Phys. 269 (2007), 283-310. MR2274549
F. Battaglia, Geometric spaces from arbitrary convex polytopes, Internat. J. Math. 23 (2012), 1250013, 39 pp. MR2888940
F. Battaglia and E. Prato, Generalized toric varieties for simple nonrational convex polytopes, Internat. Math. Res. Notices (2001), no. 24, 1315-1337. MR1866747
F. Battaglia and E. Prato, The symplectic geometry of Penrose rhombus tilings, J. Symplectic Geom. 6 (2008), 139-158. MR2434438
F. Battaglia and E. Prato, The symplectic Penrose kite, Comm. Math. Phys. 299 (2010), 577-601. MR2718924
F. Battaglia and E. Prato, Ammann tilings in symplectic geometry, SIGMA Symmetry Integrability Geom. Methods Appl. 9 (2013), Paper 021, 13 pp. MR3034408
F. Battaglia and E. Prato, Toric geometry of the regular convex polyhedra, J. Math. (2017), Art. ID 2542796, 15 pp. MR3630682
F. Battaglia and E. Prato, Nonrational symplectic toric cuts, Internat. J. Math. 29 (2018), no. 10, 1850063, 19 pp. MR3861905
F. Battaglia and E. Prato, Nonrational symplectic toric reduction, J. Geom. Phys. 135 (2019), 98-105. MR3872625
F. Battaglia, E. Prato and D. Zaffran, Hirzebruch surfaces in a one-parameter family, Boll. Unione Mat. Ital. 12 (2019), 293-305. MR3936308
F. Battaglia and D. Zaffran, Foliations modeling nonrational simplicial toric varieties, Int. Math. Res. Not. IMRN (2015), no. 22, 11785-11815. MR3456702
F. Battaglia and D. Zaffran, Simplicial toric varieties as leaf spaces, in "Special metrics and group actions in geometry", Springer INdAM Ser. 23, Springer, Cham, 2017, 1-21. MR3751960
A. Boivin, Non--simplicial quantum toric varieties, arXiv:2006.16715, preprint, 2020. DOI
F. Bosio, Variétés complexes compactes: une généralisation de la construction de Meersseman et López de Medrano-Verjovsky, Ann. Inst. Fourier (Grenoble) 51 (2001), 1259-1297. MR1860666
P. Bressler and V. A. Lunts, Intersection cohomology on nonrational polytopes, Compositio Math. 135 (2003), 245-278. MR1956814
P. Bressler and V. A. Lunts, Hard Lefschetz theorem and Hodge--Riemann relations for intersection cohomology of nonrational polytopes, Indiana Univ. Math. J. 54 (2005), 263-307. MR2126725
A. Cannas da Silva, Lectures on symplectic geometry, Lecture Notes in Math., 1764, Springer-Verlag, Berlin, 2001 MR1853077
D. A. Cox, J. B. Little and H. K. Schenck, Toric varieties, Grad. Stud. Math., 124, American Mathematical Society, Providence, 2011. MR2810322
V. I. Danilov, The geometry of toric varieties, Russian Math. Surveys 33 (1978), 97-154. DOI
J. A. De Loera, J. Rambau and F. Santos, Triangulations, Structures for algorithms and applications, Algorithms Comput. Math., 25, Springer-Verlag, Berlin, 2010. MR2743368
T. Delzant, Hamiltoniens périodiques et images convexes de l'application moment, Bull. Soc. Math. France 116 (1988), 315-339. MR0984900
M. Demazure, Sous-groupes algébriques de rang maximum du groupe de Cremona, Ann. Sci. École Norm. Sup. 3 (1970), 507-588. MR0284446
W. Fulton, Introduction to toric varieties, Ann. of Math. Stud., 131, Princeton University Press, Princeton, 1993. MR1234037
B. Grünbaum, Convex polytopes, Grad. Texts in Math., 221, Springer-Verlag, New York, 2003. MR1976856
V. Guillemin, Moment maps and combinatorial invariants of Hamiltonian \(T^n\)-spaces, Progr. Math., 122, Birkhäuser, Boston, 1994. MR1301331
V. Guillemin and S. Sternberg, Convexity properties of the moment mapping, Invent. Math. 67 (1982), 491-513. MR0664117
B. Hoffman, Toric symplectic stacks, Adv. Math. 368 (2020), 107135, 43 pp. MR4082991
B. Hoffman and R. Sjamaar, Stacky Hamiltonian actions and symplectic reduction, Int. Math. Res. Not. IMRN (2020), no. 20, 15209-15300. MR4329869
P. Iglesias--Zemmour and E. Prato, Quasifolds, diffeology and noncommutative geometry, J. Noncommut. Geom. 15 (2021), 735-759. MR4325720
H. Ishida, Torus invariant transverse Kähler foliations, Trans. Amer. Math. Soc. 369 (2017), 5137-5155. MR3632563
H. Ishida, Complex manifolds with maximal torus actions, J. Reine Angew. Math. 751 (2019), 121-184. MR3956693
H. Ishida , R. Krutowski and T. Panov, Basic cohomology of canonical holomorphic foliations on complex moment-angle manifolds, Int. Math. Res. Not. IMRN (2022), no. 7, 5541-5563. MR4403969
K. Karu, Hard Lefschetz theorem for nonrational polytopes, Invent. Math. 157 (2004), 419-447. MR2076929
L. Katzarkov, E. Lupercio, L. Meersseman and A. Verjovsky, Quantum (non-commutative) toric geometry: foundations, Adv. Math. 391 (2021), Paper No. 107945, 110 pp. MR4300912
R. Krutowski and T. Panov, Dolbeault cohomology of complex manifolds with torus action, in "Topology, geometry, and dynamics-V. A. Rokhlin-Memorial", Contemp. Math., 772, American Mathematical Society, Providence, 2021, 73-187. MR4305539
E. Lerman and S. Tolman, Hamiltonian torus actions on symplectic orbifolds and toric varieties, Trans. Amer. Math. Soc. 349 (1997), 4201-4230. MR1401525
Y. Lin and R. Sjamaar, Convexity properties of presymplectic moment maps, J. Symplectic Geom. 17 (2019), 1159-1200. MR4031537
J. J. Loeb and M. Nicolau, On the complex geometry of a class of non-Kählerian manifolds, Israel J. Math. 110 (1999), 371-379. MR1750427
S. López de Medrano and A. Verjovsky, A new family of complex, compact, non-symplectic manifolds, Bol. Soc. Brasil. Mat. (N.S.) 28 (1997), 253-269. MR1479504
A. L. Mackay, De nive quinquangula: on the pentagonal snowflake, Soviet Phys. Cryst. 26 (1981), 517-522. MR0651500
L. Meersseman, A new geometric construction of compact complex manifolds in any dimension, Math. Ann. 317 (2000), 79-115. MR1760670
L. Meersseman and A. Verjovsky, Holomorphic principal bundles over projective toric varieties, J. Reine Angew. Math. 572 (2004), 57-96. MR2076120
R. Penrose, Pentaplexity: a class of nonperiodic tilings of the plane, Math. Intelligencer 2 (1979/80/1980), no. 1, 32-37. MR0558670
A. F. Pir and F. Sottile, Irrational toric varieties and secondary polytopes, Discrete Comput. Geom. 67 (2022), 1053-1079. MR4419618
E. Prato, Sur une généralisation de la notion de V-variété, C. R. Acad. Sci. Paris Sér. I Math. 328 (1999), 887-890. MR1689861
E. Prato, Simple non-rational convex polytopes via symplectic geometry, Topology 40 (2001), 961-975. MR1860537
E. Prato, Symplectic toric geometry and the regular dodecahedron, J. Math. (2015), Art. ID 967417, 5 pp. MR3426654
E. Prato, Toric quasifolds, Math. Intelligencer 45 (2023), 133-138. MR4600262 %%doi:10.1007/s00283-022-10212-y
T. Ratiu and N. T. Zung, Presymplectic convexity and (ir)rational polytopes, J. Symplectic Geom. 17 (2019), 1479-1511. MR4039815
M. Senechal, Quasicrystals and geometry, Cambridge University Press, Cambridge, 1995. MR1340198
Yu. M. Ustinovsky, Geometry of compact complex manifolds with maximal torus action, Proc. Steklov Inst. Math. 286 (2014), 198-208. MR3482597
G. M. Ziegler, Lectures on polytopes, Grad. Texts in Math., 152, Springer-Verlag, New York, 1995. MR1311028
G. M. Ziegler, Nonrational configurations, polytopes, and surfaces, Math. Intelligencer 30 (2008), 36-42. MR2437198

Home Riv.Mat.Univ.Parma