Riv. Mat. Univ. Parma, Vol. 14, No. 1, 2023

Tsuyoshi Itoh [a]

On the unramified Iwasawa module of a \(\mathbb{Z}_p\)-extension generated by division points of a CM elliptic curve

Pages: 153-171
Received: 7 September 2022
Accepted in revised form: 28 March 2023
Mathematics Subject Classification: 11R23, 11G05, 11G15.
Keywords: Non-cyclotomic \(\mathbb{Z}_p\)-extension, Iwasawa module, CM elliptic curve.
Authors address:
[a]: Division of Mathematics, Education Center, Faculty of Social Systems Science, Chiba Institute of Technology, 2-1-1 Shibazono, Narashino, Chiba, 275-0023, Japan

This work was partly supported by JSPS KAKENHI Grant Number JP15K04791.

Full Text (PDF)

Abstract: We consider the unramified Iwasawa module \(X (F_\infty)\) of a certain \(\mathbb{Z}_p\)-extension \(F_\infty/F_0\) generated by division points of an elliptic curve with complex multiplication. This \(\mathbb{Z}_p\)-extension has properties similar to those of the cyclotomic \(\mathbb{Z}_p\)-extension of a real abelian field, however, it is already known that \(X (F_\infty)\) can be infinite. That is, an analog of Greenberg's conjecture for this \(\mathbb{Z}_p\)-extension fails. In this paper, we mainly consider analogs of weak forms of Greenberg's conjecture.

References
[1]
J. Assim and T. Nguyen Quang Do, Sur la constante de Kummer-Leopoldt d'un corps de nombres, Manuscripta Math. 115 (2004), 55-72. MR2092776
[2]
R. Badino and T. Nguyen Quang Do, Sur les égalités du miroir et certaines formes faibles de la conjecture de Greenberg, Manuscripta Math. 116 (2005), 323-340. MR2130946
[3]
D. Bernardi, C. Goldstein and N. Stephens, Notes \(p\)-adiques sur les courbes elliptiques, J. Reine Angew. Math. 351 (1984), 129-170. MR0749680
[4]
J. Choi and J. Coates, Iwasawa theory of quadratic twists of \(X_0 (49)\), Acta Math. Sin. (Engl. Ser.) 34 (2018). 19-28. MR3735830
[5]
J. Coates, Y. Li, Y. Tian and S. Zhai, Quadratic twists of elliptic curves, Proc. Lond. Math. Soc. 110 (2015), 357-394. MR3335282
[6]
J. Coates and A. Wiles, On the conjecture of Birch and Swinnerton-Dyer, Invent. Math. 39 (1977), 223-251. MR0463176
[7]
J. E. Cremona, mwrank and eclib, http://homepages.warwick.ac.uk/staff/J.E.Cremona/mwrank/index.html.
[8]
S. Fujii, Some remarks on finite submodules of the unramified Iwasawa module of totally real fields, Proc. Japan Acad. Ser. A Math. Sci. 96 (2020), 83-85. MR4170183
[9]
S. Fujii and T. Itoh, Some remarks on pseudo-null submodules of tamely ramified Iwasawa modules, J. Théor. Nombres Bordeaux 30 (2018), 533-555. MR3891326
[10]
T. Fukuda and K. Komatsu, \(\mathbb{Z}_p\)-extensions associated to elliptic curves with complex multiplication, Math. Proc. Cambridge Philos. Soc. 137 (2004), 541-550. MR2103915
[11]
T. Fukuda, K. Komatsu and S. Yamagata, Iwasawa \(\lambda\)-invariants and Mordell-Weil ranks of abelian varieties with complex multiplication, Acta Arith. 127 (2007), 305-307. MR2302046
[12]
C. D. Gonzalez-Avilés, On the conjecture of Birch and Swinnerton-Dyer, Trans. Amer. Math. Soc. 349 (1997), 4181-4200. MR1390036
[13]
G. Gras, The \(p\)-adic Kummer-Leopoldt constant: normalized \(p\)-adic regulator, Int. J. Number Theory 14 (2018), 329-337. MR3761496
[14]
R. Greenberg, On the Iwasawa invariants of totally real number fields, Amer. J. Math. 98 (1976), 263-284. MR0401702
[15]
R. Greenberg, On the structure of certain Galois groups, Invent. Math. 47 (1978), 85-99. MR0504453
[16]
R. Greenberg, On the Birch and Swinnerton-Dyer conjecture, Invent. Math. 72 (1983), 241-265. MR0700770
[17]
R. Greenberg, Iwasawa theory - past and present, Class field theory - its centenary and prospect (Tokyo, 1998), Adv. Stud. Pure. Math., 30, Math. Soc. Japan, Tokyo, 2001, 335-385. MR1846466
[18]
B. H. Gross, Arithmetic on elliptic curves with complex multiplication, with an appendix by B. Mazur, Lecture Notes in Math., 776, Springer, Berlin, 1980. MR0563921
[19]
T. Hadano, Conductor of elliptic curves with complex multiplication and elliptic curves of prime conductor, Proc. Japan Acad. 51 (1975), 92-95. MR0371907
[20]
T. Itoh, Tamely ramified Iwasawa modules having no non-trivial pseudo-null submodules, J. Théor. Nombres Bordeaux 30 (2018), 859-872. MR3938630
[21]
I. Kimura, Sage for number theorists, (Japanese. English summary), Algebraic number theory and related topics 2010, RIMS Kôkyûroku Bessatsu, B32, Research Institute for Mathematical Sciences (RIMS), Kyoto, 2012,125-144. MR2986921
[22]
J. Li, On the \(2\)-adic logarithm of units if certain totally imaginary quartic fields, Asian J. Math. 25 (2021), 177-182. MR4334412
[23]
J. Li, On the \(\lambda\)-invariant of Selmer groups arising from certain quadratic twists of Gross curves, arXiv:2107.03027, preprint, 2021. DOI
[24]
R. L. Miller, Proving the Birch and Swinnerton-Dyer conjecture for specific elliptic curves of analytic rank zero and one, LMS J. Compt. Math. 14 (2011), 327-350. MR2861691
[25]
T. Nguyen Quang Do, Sur la conjecture faible de Greenberg dans le cas abélien \(p\)-décomposé, Int. J. Number Theory 2 (2006), 49-64. MR2217794
[26]
T. Nguyen Quang Do, Sur une forme faible de la conjecture de Greenberg II, Int. J. Number Theory 13 (2017), 1061-1070. MR3627698
[27]
K. Ono and M. A. Papanikolas, Quadratic twists of modular forms and elliptic curves, Number theory for the millennium, III (Urbana, IL, 2000), A K Peters, Natick, MA, 2002, 73-85. MR1956269
[28]
M. Ozaki, A note on the capitulation in \(\boldsymbol{Z}_p\)-extensions, Proc. Japan Acad. Ser. A Math. Sci. 71 (1995), 218-219. MR1373385
[29]
M. Ozaki, On the cyclotomic unit group and the ideal class group of a real abelian number field II, J. Number Theory 64 (1997), 223-232. MR1453211
[30]
M. Ozaki, The class group of \(\boldsymbol{Z}_p\)-extensions over totally real number fields, Tôhoku Math. J. (2) 49 (1997), 431-435. MR1464188
[31]
M. Ozaki and H. Taya, A note on Greenberg's conjecture for real abelian number fields, Manuscripta Math. 88 (1995), 311-320. MR1359700
[32]
M. Ozaki and H. Taya, On the Iwasawa \(\lambda_2\)-invariants of certain families of real quadratic fields, Manuscripta Math. 94 (1997), 437-444. MR1484637
[33]
The PARI-Group, PARI/GP version 2.13.1, Univ. Bordeaux, 2021, http://pari.math.u-bordeaux.fr/.
[34]
B. Perrin-Riou, Arithmétique des courbes elliptiques et théorie d'Iwasawa, Mém. Soc. Math. France (N.S.) 17 (1984), 130 pp. MR0799673
[35]
A. R. Rajwade, Some formulae for elliptic curves with complex multiplication, Indian J. Pure Appl. Math. 8 (1977), 379-387. MR0476651
[36]
M. J. Razar, The non-vanishing of \(L (1)\) for certain elliptic curves with no first descents, Amer. J. Math. 96 (1974), 104-126. MR0360596
[37]
K. Rubin, Tate-Shafarevich groups and \(L\)-functions of elliptic curves with complex multiplication, Invent. Math. 89 (1987), 527-559. MR0903383
[38]
K. Rubin, The "main conjectures" of Iwasawa theory for imaginary quadratic fields, Invent. Math. 103 (1991), 25-68. MR1079839
[39]
K. Rubin, The one-variable main conjecture for elliptic curves with complex multiplication, \(L\)-functions and arithmetic (Durham, 1989), London Math. Soc. Lecture Note Ser., 153, Cambridge University Press, Cambridge, 1991, 353-371. MR1110401
[40]
K. Rubin, Elliptic curves with complex multiplication and the conjecture of Birch and Swinnerton-Dyer, Arithmetic theory of elliptic curves (Cetraro, 1997), Lecture Notes in Math., 1716, Springer-Verlag, Berlin, 1999, 167-234. MR1754688
[41]
The Sage Developers, SageMath, the Sage Mathematics Software System (Version 9.2), 2020, https://www.sagemath.org.
[42]
J. H. Silverman, The arithmetic of elliptic curves, Grad. Texts in Math., 106, Springer-Verlag, New York, 1986. Corrected 2nd printing, 1992. MR0817210   MR1329092
[43]
J. H. Silverman, Advanced topics in the arithmetic of elliptic curves, Grad. Texts in Math., 151, Springer-Verlag, New York, 1994. Corrected second printing, 1999. MR1312368
[44]
L. C. Washington, Introduction to cyclotomic fields, Second ed., Grad. Texts in Math., 83, Springer-Verlag, New York, 1997. MR1421575


Home Riv.Mat.Univ.Parma