Riv. Mat. Univ. Parma, Vol. 14, No. 1, 2023
Giuseppe Maria Coclite ^{[a]} and Lorenzo di Ruvo ^{[b]}
The porous medium equation with capillary pressure effects
Pages: 173190
Received: 31 March 2023
Accepted in revised form: 4 July 2023
Mathematics Subject Classification: 35G25, 35K55.
Keywords: Existence, uniqueness, stability, porous medium equation, Cauchy problem.
Authors address:
[a]: Politecnico di Bari, Dipartimento di Meccanica, Matematica e Management, Bari, Italy
[b]: Università di Bari, Dipartimento di Matematica, Bari, Italy
The authors are members of the Gruppo Nazionale per l'Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA)
of the Istituto Nazionale di Alta Matematica (INdAM).
GMC has been partially supported by the Research Project of National Relevance ''Multiscale Innovative Materials and Structures''
granted by the Italian Ministry of Education, University and Research (MIUR Prin 2017, project code 2017J4EAYB and the Italian Ministry of Education,
University and Research under the Programme Department of Excellence Legge 232/2016 (Grant No. CUP  D94I18000260001).
Full Text (PDF)
Abstract:
We consider a third order equation, which includes pressure as a dissipative term, and describes the dynamics of twophase flows in a porous media.
It is a generalization of BenjaminBonaMahony equation, which models long waves in a nonlinear dispersive system.
We prove the wellposedness of the Cauchy problem, associated with this equation.
References
 [1]

E. Abreu and J. Vieira,
Computing numerical solutions of the pseudoparabolic BuckleyLeverett equation with dynamic capillary pressure,
Math. Comput. Simulation 137 (2017), 2948.
MR3624733
 [2]

C. J. Amick, J. L. Bona and M. E. Schonbek,
Decay of solutions of some nonlinear wave equations,
J. Differential Equations 81 (1989), no. 1, 149.
MR1012198
 [3]

J. Avrin and J. A. Goldstein,
Global existence for the BenjaminBonaMahony equation in arbitrary dimensions,
Nonlinear Anal. 9 (1985), no. 8, 861865.
MR0799889
 [4]

G. I. Barenblatt, M. Bertsch, R. Dal Passo and M. Ughi,
A degenerate pseudoparabolic regularization of a nonlinear forwardbackward
heat equation arising in the theory of heat and mass exchange in stably stratified turbulent shear flow,
SIAM J. Math. Anal. 24 (1993), no. 6, 14141439.
MR1241152
 [5]

G. I. Barenblatt, J. GarciaAzorero, A. De Pablo and J. L. Vazquez,
Mathematical model of the nonequilibrium wateroil displacement in porous strata,
Appl. Anal. 65 (1997), no. 12, 1945.
MR1674579
 [6]

G. I. Barenblatt, Iu. P. Zheltov and I. N. Kochina,
Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks [strata],
J. Appl. Math. Mech. 24 (1960), 12861303.
DOI
 [7]

T. B. Benjamin, J. L. Bona and J. J. Mahony,
Model equations for long waves in nonlinear dispersive systems,
Philos. Trans. Roy. Soc. London Ser. A 272 (1972), no.1220, 4778.
MR0427868
 [8]

G. M. Coclite and L. di Ruvo,
On the convergence of the modified Rosenau and the modified BenjaminBonaMahony equations,
Comput. Math. Appl. 74 (2017), no. 5, 899919.
MR3689925
 [9]

G. M. Coclite and L. di Ruvo,
A singular limit problem for conservation laws related to the RosenauKortewegde Vries equation,
J. Math. Pures Appl. (9) 107 (2017), no. 3, 315335.
MR3609209
 [10]

G. M. Coclite and L. di Ruvo,
A note on convergence of the solutions of BenjaminBonaMahony type equations,
Nonlinear Anal. Real World Appl. 40 (2018), 6481.
MR3718975
 [11]

G. M. Coclite and L. Di Ruvo,
Existence results for the KudryashovSinelshchikovOlver equation,
Proc. Roy. Soc. Edinburgh Sect. A 151 (2021), no. 2, 425450.
MR4241285
 [12]

G. M. Coclite and L. Di Ruvo,
On the classical solutions for a RosenauKortewegdeVriesKawahara type equation,
Asymptot. Anal. 129 (2022), no. 1, 5173.
MR4465912
 [13]

C. Cuesta and J. Hulshof,
A model problem for groundwater flow with dynamic capillary pressure: stability of travelling waves,
Nonlinear Anal. 52 (2003), no. 4, 11991218.
MR1941253
 [14]

C. Cuesta, C. J. van Duijn and J. Hulshof,
Infiltration in porous media with dynamic capillary pressure: travelling waves,
European J. Appl. Math. 11 (2000), no. 4, 381397.
MR1790042
 [15]

J. GarciaAzorero and A. de Pablo,
Finite propagation for a pseudoparabolic equation: twophase nonequilibrium flows in porous media,
Nonlinear Anal. 33 (1998), no. 6, 551573.
MR1635903
 [16]

J. A. Goldstein and B. J. Wichnoski,
On the BenjaminBonaMahony equation in higher dimensions,
Nonlinear Anal. 4 (1980), no. 4, 665675.
MR0582535
 [17]

B. Hayes and M. Shearer,
Undercompressive shocks and Riemann problems for scalar conservation laws with nonconvex fluxes,
Proc. Roy. Soc. Edinburgh Sect. A 129 (1999), no. 4, 733754.
MR1718538
 [18]

R. Helmig, A. Weiss and B. I. Wohlmuth,
Dynamic capillary effects in heterogeneous porous media,
Comput. Geosci. 11 (2007), no. 3, 261274.
MR2344202
 [19]

J. Hulshof and J. R. King,
Analysis of a Darcy flow model with a dynamic pressure saturation relation,
SIAM J. Appl. Math. 59 (1999), no. 1, 318346.
MR1647829
 [20]

D. Jacobs, B. McKinney and M. Shearer,
Traveling wave solutions of the modified KortewegdeVriesBurgers equation,
J. Differential Equations 116 (1995), no. 2, 448467.
MR1318583
 [21]

C.Y. Kao, A. Kurganov, Z. Qu and Y. Wang,
A fast explicit operator splitting method for modified BuckleyLeverett equations,
J. Sci. Comput. 64 (2015), no. 3, 837857.
MR3377841
 [22]

C. I. Kondo and C. M. Webler,
The generalized BBMBurger equations with nonlinear dissipative term:
existence and convergence results,
Appl. Anal. 87 (2008), no. 9, 10851101.
MR2463895
 [23]

S. Manthey, S. M. Hassanizadeh, R. Helmig and R. Hilfer,
Dimensional analysis of twophase flow including a ratedependent capillary pressuresaturation relationship,
Advances in Water Resources 31 (2008), no. 9, 11371150.
DOI
 [24]

M. Meyvaci,
Blow up of solutions of pseudoparabolic equations,
J. Math. Anal. Appl. 352 (2009), no. 2, 629633.
MR2501907
 [25]

M. E. Schonbek,
Convergence of solutions to nonlinear dispersive equations,
Comm. Partial Differential Equations 7 (1982), no. 8, 9591000.
MR0668586
 [26]

N. Seam and G. Vallet,
Existence results for nonlinear pseudoparabolic problems,
Nonlinear Anal. Real World Appl. 12 (2011), no. 5, 26252639.
MR2813209
 [27]

M. Shearer, K. R. Spayd and E. R. Swanson,
Traveling waves for conservation laws with cubic nonlinearity and BBM type dispersion,
J. Differential Equations 259 (2015), no. 7, 32163232.
MR3360671
 [28]

K. Spayd and M. Shearer,
The BuckleyLeverett equation with dynamic capillary pressure,
SIAM J. Appl. Math. 71 (2011), no. 4, 10881108.
MR2823494
 [29]

C. J. van Duijn, Y. Fan, L. A. Peletier and I. S. Pop,
Travelling wave solutions for degenerate pseudoparabolic equations modelling twophase flow in porous media,
Nonlinear Anal. Real World Appl. 14 (2013), no. 3, 13611383.
MR3004506
 [30]

C. J. van Duijn, L. A. Peletier and I. S. Pop,
A new class of entropy solutions of the BuckleyLeverett equation,
SIAM J. Math. Anal. 39 (2007), no. 2, 507536.
MR2338418
 [31]

Y. Wang and C.Y. Kao,
Central schemes for the modified BuckleyLeverett equation,
J. Comput. Sci. 4 (2013), no. 12, 1223.
DOI
 [32]

P. A. Zegeling,
An adaptive grid method for a nonequilibrium PDE model from porous media,
J. Math. Study 48 (2015), no. 2, 187198.
MR3374383
 [33]

H. Zhang and P. A. Zegeling,
A numerical study of twophase flow models with dynamic capillary pressure and hysteresis,
Transp. Porous Media 116 (2017), no. 2, 825846.
MR3605205
 [34]

H. Zhang and P. A. Zegeling,
A moving mesh finite difference method for nonmonotone solutions of nonequilibrium equations in porous media,
Commun. Comput. Phys. 22 (2017), no. 4, 935964.
MR3719254
Home Riv.Mat.Univ.Parma