Riv. Mat. Univ. Parma, Vol. 14, No. 1, 2023
Abel Medina Lourenço ^{[a]}
Powers of Fibonacci numbers which are products of repdigits
Pages: 205215
Received: 14 April 2023
Accepted accepted in revised form: 29 June 2023
Mathematics Subject Classification: 11D61, 11B39.
Keywords: Exponential Diophantine equations, Fibonacci numbers.
Authors address:
[a]: Universidade de São Paulo, Instituto de Matemática e Estatística, São Paulo, Brasil
Full Text (PDF)
Abstract:
In this article we solve the equation
\(F_{n}^{k} = \left(d_{1}\cdot\frac{{10}^{m} 1}{9}\right) \cdot \left(d_{2}\cdot\frac{{10}^{q} 1}{9}\right)\),
with \(n,k,d_{1},d_{2},m,q \in \mathbb{N}, d_{1},d_{2} = 1,\dots,9, m,q \ge 2\), \(k \ge 2\), showing that the
only perfect power of a Fibonacci number which is a product of two repdigits is \(F_{10}^{2} = 55 \cdot 55\).
In order to do this we use only elementary methods, like divisibility properties of Fibonacci numbers,
periodicity, results on prime factorizations and an application of NagellLjunggren equations.
References
 [1]

A. Baker and H. Davenport,
The equations \(3x^2  2 = y^2\) and \( 8x^2  7= z^2 \),
Quart. J. Math. Oxford Ser. 20 (1969), 129137.
MR0248079
 [2]

F. Erduvan and R. Keskin,
Fibonacci and Lucas numbers as products of two repdigits,
Turkish J. Math. 43 (2019), no. 5, 21422153.
MR4020376
 [3]

F. Erduvan, R. Keskin and Z. Şiar,
Repdigits base b as products of two Fibonacci numbers,
Indian J. Pure Appl. Math. 52 (2021), no. 3, 861868.
MR4356288
 [4]

F. Lemmermeyer,
Reciprocity laws: from Euler to Eisenstein,
Springer Monogr. Math., SpringerVerlag, Berlin, 2000.
MR1761696
 [5]

W. Ljunggren,
Some theorems on indeterminate equations of the form \(x^n1/x1=y^q\), (Norwegian),
Norsk. Mat. Tidsskr 25 (1943), 1720.
MR0018674
 [6]

A. M. Lourenço,
Powers of Fibonacci numbers with only one distinct digit,
preprint.
 [7]

F. Luca,
Fibonacci and Lucas numbers with only one distinct digit,
Portugal. Math. 57 (2000), 243254.
MR1759818
 [8]

E. M. Matveev,
An explicit lower bound for a homogeneous rational linear form in logarithms of algebraic numbers,
Izv. Math. 62 (1998), 723772.
 [9]

T. Nagell,
Note sur l’équation indéterminée \(x^n1/x1=y^q\), (Norwegian),
Norsk. Mat. Tidsskr 2 (1920), 7578.
Zbl
Home Riv.Mat.Univ.Parma