**Genni Fragnelli**^{[a]},
**Patrick Martinez**^{[b]} and
**Judith Vancostenoble **^{[c]}

*A new age-dependent population model with diffusion and gestation processes
*

**Pages:** 321-339

**Received:** 15 January 2016

**Accepted:** 27 June 2016

**Mathematics Subject Classification (2010):** 35Q92, 35B40, 35B51.

**Keywords:** Population dynamics, coupled equations, qualitative properties, asymptotic behaviour.

**Author address:**

[a]: Università degli Studi di Bari, Dipartimento di Matematica
, Via Orabona 4, 70125 Bari, Italy

[b], [c]: University of Toulouse Paul Sabatier, Institut de Mathématiques de Toulouse, 118 route de Narbonne, 31062 Toulouse cedex 9, France

**Abstract:**
In this paper, we introduce a new age-structured population model with diffusion
and gestation processes and make a complete study of the qualitative properties of its solutions.
The model is in the spirit of a model introduced in [13, 15] and studied in [10].
We aim here to correct some weakness of the model that was pointed out in [10].

**References**

[1]
B. Ainseba,
*Exact and approximate controllability of the age and space population dynamics structured model*,
J. Math. Anal. Appl. 275 (2002), no. 2, 562–574.
MR

[2]
B. Ainseba and S. Anita,
*Local exact controllability of the age-dependent population dynamics with diffusion*,
Abstr. Appl. Anal. 6 (2001), no. 6, 357–368.
MR

[3]
B. Ainseba and M. Iannelli,
* Exact controllability of a nonlinear population-dynamics problem*,
Differential Integral Equations 16 (2003), no. 11, 1369–1384.
MR

[4]
B. Ainseba and M. Langlais,
* On a population dynamics control problem with age dependence and spatial structure*,
J. Math. Anal. Appl. 248 (2000), no. 2, 455–474.
MR

[5]
S. Anita,
*Analysis and control of age-dependent population dynamics*,
in "Mathematical Modelling: Theory and Applications", 11,
Kluwer Academic Publishers, Dordrecht 2000.
MR

[6]
S. Anita,
*Optimal impulse-control of population dynamics with diffusion*,
in "Differential equations and control theory", V. Barbu, ed.,
Pitman Res. Notes Math. Ser., 250, Longman, Harlow 1991, 1–6.
MR

[7]
S. Anita,
*Optimal control of a nonlinear population dynamics with diffusion*,
J. Math. Anal. Appl. 152 (1990), 176–208.
MR

[8]
K.-J. Engel and R. Nagel,
*One-parameter semigroups for linear evolution equations*,
Graduate Texts in Mathematics, Springer-Verlag, New York 2000.
MR

[9]
G. Fragnelli,
*Delay equations with nonautonomous past*,
PhD. Thesis, Mathematischen Fakultät der Eberhard-Karls-Universität Tübingen,
2002.

[10]
G. Fragnelli, P. Martinez and J. Vancostenoble,
*Qualitative properties of a population dynamics system describing pregnancy*,
Math. Models and Methods in Appl. Sci. 15 (2005), no. 4, 507–554.
MR

[11]
G. Fragnelli and G. Nickel,
*Partial functional differential equations with nonautonomous past in \(L^p\)-phase spaces*,
Differential Integral Equations 16 (2003), 327–348.
MR

[12]
G. Fragnelli,
*A spectral mapping theorem for semigroups solving PDEs with nonautonomous past*,
Abstr. Appl. Anal. 2003, no. 16, 933–951.
MR

[13]
G. Fragnelli and L. Tonetto,
*A population equation with diffusion*,
J. Math. Anal. Appl. 289 (2004), 90–99.
MR

[14]
P. Martinez, J.-P. Raymond and J. Vancostenoble,
*Regional null controllability of a linearized Crocco-type equation*,
SIAM J. Control Optim. 42 (2003), no. 2, 709–728.
MR

[15]
G. Nickel and A. Rhandi,
*Positivity and stability of delay equations with nonautonomous past*,
Math. Nachr. 278 (2005), no. 7-8, 864–876.
MR

[16]
S. Piazzera,
*An age-dependent population equation with delayed birth process*,
Math. Methods Appl. Sci. 27 (2004), no. 4, 427–439.
MR

[17]
M. A. Pozio,
*Some conditions for global asymptotic stability of equilibria of integro-differential equations*,
J. Math. Anal. Appl. 95 (1983), no. 2, 501–527.
MR

[18]
J. Wu,
*Theory and applications of partial functional-differential equations*,
Applied Mathematical Sciences, 119, Springer-Verlag, New York 1996.
MR

Home Riv.Mat.Univ.Parma