**Luciano Pandofi**^{[1]}

*Controllability for the heat equation with memory: a recent approach
*

**Pages:** 259-277

**Received:** 12 November 2015

**Accepted:** 29 February 2016

**Mathematics Subject Classification (2010):** 45K05, 93B03, 93B05, 93C22.

**Keywords:** Controllability, systems with persistent memory, thermodynamics of materials with memory, viscoelasticity.

**Author address:**

[1] : Politecnico di Torino,
Dipartimento di Scienze Matematiche "G. L. Lagrange",
Corso Duca degli Abruzzi 24,
Torino, 10129, Italy

**Abstract:**
We present some recent ideas and new results in the study of controllability of a distributed
system with persistent memory, which is encountered in several applications, most noticeably
thermodynamics of systems with memory and viscoelasticity.

**References**

[1]
S. Avdonin and L. Pandolfi,
*Simultaneous temperature and flux controllability for heat equations with memory*,
Quart. Appl. Math. 71 (2013), 339–368.
MR

[2]
S. Avdonin and L. Pandolfi,
*Temperature and heat flux dependence/independence for heat equations with memory*,
in "Time Delay Systems - Methods, Applications and New Trend", R. Sipahi, T. Vyhlidal, S.-I. Niculescu and P. Pepe, eds.,
Lecture Notes in Control and Inform. Sci., 423, Springer, Berlin 2012, 87–101.
MR

[3]
C. Bardos, G. Lebeau and J. Rauch,
*Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary*,
SIAM J. Control Optim. 30 (1992), 1024–1065.
MR

[4]
J. Baumeister,
*Boundary control of an integro-differential equation*,
J. Math. Anal. Appl. 93 (1983), 550–570.
MR

[5]
X. Fu, J. Yong and X. Zhang,
*Controllability and observability of a heat equation with hyperbolic memory kernel*,
J. Differential Equations 247 (2009), 2395–2439.
MR

[6]
A. Hassel and T. Tao,
*Erratum for "Upper and lower bounds for normal derivatives of Dirichlet eigenfunctions"*,
Math. Res. Lett. 17 (2010), 793–794.
MR

[7]
G. Leugering,
*On boundary controllability of viscoelastic systems*,
in "Control of partial differential equations" (Santiago de Compostela, 1987),
Lecture Notes in Control and Inform. Sci., 114, Springer, Berlin 1989, 190–201.
MR

[8]
J.-L. Lions,
*Contrôlabilité exacte, perturbations et stabilization de systèmes distribués*, Vol. 1,
Masson, Paris 1988.
MR

[9]
V. Komornik and P. Loreti,
*Fourier series in control theory*,
Springer Monographs in Mathematics, Springer-Verlag, New York 2005.
MR

[10]
J. U. Kim,
*Control of a second-order integro-differential equation*,
SIAM J. Control Optim. 31 (1993), 101–110.
MR

[11]
L. Pandolfi,
*Boundary controllability and source reconstruction in a viscoelastic string under external traction*,
J. Math. Anal. Appl. 407 (2013), 464–479.
MR

[12]
L. Pandolfi,
*The controllability of the Gurtin-Pipkin equation: a cosine operator approach*,
Appl. Math. Optim. 52 (2005), 143–165, (Errratum in: Appl. Math. Optim. 64 (2011), 467–468).
MR
(MR)

[13]
L. Pandolfi,
*Riesz systems, spectral controllability and a source identification problem for heat equations with memory*,
Discrete Contin. Dyn. Syst. Ser. S 4 (2011), 745–759.
MR

[14]
L. Pandolfi,
*On-line input identification and application to Active Noise Cancellation*,
Annual Reviews in Control 34 (2010), 245–261.
DOI: 10.1016/j.arcontrol.2010.07.001

[15]
L. Pandolfi,
*Traction, deformation and velocity of deformation in a viscoelastic string*,
Evol. Equ. Control Theory 2 (2013), 471–493.
MR

[16]
L. Pandolfi,
*Sharp control time for viscoelastic bodies*,
J. Integral Equations Appl. 27 (2015), 103–136.
MR

[17]
L. Pandolfi,
*Distributed systems with persistent memory. Control and moment problems*,
Springer Briefs in Electrical and Computer Engineering. Control, Automation and Robotics. Springer, Cham 2014.
MR

[18]
L. Pandolfi,
*Controllability of isotropic viscoelastic bodies of Maxwell-Boltzmann type*,
ESAIM Control Optim. Calc. Var.,
DOI: 10.1051/cocv/2016068,
to appear.

[19]
M. Renardy,
*Mathematical analysis of viscoelastic fluids*,
Handbook of differential equations: evolutionary equations, Vol. IV, Handb. Differ. Equ., Elsevier/North-Holland, Amsterdam 2008, 229–265.
MR

[20]
M. Tucsnak and G. Weiss,
*Observation and control for operator semigroups*,
Birkhäuser, Basel 2009.
MR

Home Riv.Mat.Univ.Parma