Riv. Mat. Univ. Parma, Vol. 7, No. 2, 2016

Luciano Pandofi[1]

Controllability for the heat equation with memory: a recent approach

Pages: 259-277
Received: 12 November 2015
Accepted: 29 February 2016
Mathematics Subject Classification (2010): 45K05, 93B03, 93B05, 93C22.
Keywords: Controllability, systems with persistent memory, thermodynamics of materials with memory, viscoelasticity.
Author address:
[1] : Politecnico di Torino, Dipartimento di Scienze Matematiche "G. L. Lagrange", Corso Duca degli Abruzzi 24, Torino, 10129, Italy

Full Text (PDF)

Abstract: We present some recent ideas and new results in the study of controllability of a distributed system with persistent memory, which is encountered in several applications, most noticeably thermodynamics of systems with memory and viscoelasticity.


[1] S. Avdonin and L. Pandolfi, Simultaneous temperature and flux controllability for heat equations with memory, Quart. Appl. Math. 71 (2013), 339368. MR
[2] S. Avdonin and L. Pandolfi, Temperature and heat flux dependence/independence for heat equations with memory, in "Time Delay Systems - Methods, Applications and New Trend", R. Sipahi, T. Vyhlidal, S.-I. Niculescu and P. Pepe, eds., Lecture Notes in Control and Inform. Sci., 423, Springer, Berlin 2012, 87101. MR
[3] C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary, SIAM J. Control Optim. 30 (1992), 10241065. MR
[4] J. Baumeister, Boundary control of an integro-differential equation, J. Math. Anal. Appl. 93 (1983), 550570. MR
[5] X. Fu, J. Yong and X. Zhang, Controllability and observability of a heat equation with hyperbolic memory kernel, J. Differential Equations 247 (2009), 23952439. MR
[6] A. Hassel and T. Tao, Erratum for "Upper and lower bounds for normal derivatives of Dirichlet eigenfunctions", Math. Res. Lett. 17 (2010), 793794. MR
[7] G. Leugering, On boundary controllability of viscoelastic systems, in "Control of partial differential equations" (Santiago de Compostela, 1987), Lecture Notes in Control and Inform. Sci., 114, Springer, Berlin 1989, 190201. MR
[8] J.-L. Lions, Contrôlabilité exacte, perturbations et stabilization de systèmes distribués, Vol. 1, Masson, Paris 1988. MR
[9] V. Komornik and P. Loreti, Fourier series in control theory, Springer Monographs in Mathematics, Springer-Verlag, New York 2005. MR
[10] J. U. Kim, Control of a second-order integro-differential equation, SIAM J. Control Optim. 31 (1993), 101110. MR
[11] L. Pandolfi, Boundary controllability and source reconstruction in a viscoelastic string under external traction, J. Math. Anal. Appl. 407 (2013), 464479. MR
[12] L. Pandolfi, The controllability of the Gurtin-Pipkin equation: a cosine operator approach, Appl. Math. Optim. 52 (2005), 143165, (Errratum in: Appl. Math. Optim. 64 (2011), 467468). MR (MR)
[13] L. Pandolfi, Riesz systems, spectral controllability and a source identification problem for heat equations with memory, Discrete Contin. Dyn. Syst. Ser. S 4 (2011), 745759. MR
[14] L. Pandolfi, On-line input identification and application to Active Noise Cancellation, Annual Reviews in Control 34 (2010), 245261. DOI: 10.1016/j.arcontrol.2010.07.001
[15] L. Pandolfi, Traction, deformation and velocity of deformation in a viscoelastic string, Evol. Equ. Control Theory 2 (2013), 471493. MR
[16] L. Pandolfi, Sharp control time for viscoelastic bodies, J. Integral Equations Appl. 27 (2015), 103136. MR
[17] L. Pandolfi, Distributed systems with persistent memory. Control and moment problems, Springer Briefs in Electrical and Computer Engineering. Control, Automation and Robotics. Springer, Cham 2014. MR
[18] L. Pandolfi, Controllability of isotropic viscoelastic bodies of Maxwell-Boltzmann type, ESAIM Control Optim. Calc. Var., DOI: 10.1051/cocv/2016068, to appear.
[19] M. Renardy, Mathematical analysis of viscoelastic fluids, Handbook of differential equations: evolutionary equations, Vol. IV, Handb. Differ. Equ., Elsevier/North-Holland, Amsterdam 2008, 229265. MR
[20] M. Tucsnak and G. Weiss, Observation and control for operator semigroups, Birkhäuser, Basel 2009. MR

Home Riv.Mat.Univ.Parma