Riv. Mat. Univ. Parma, Vol. 8, No. 2, 2017

Maged G. Bin-Saad [a]

Some properties of multivariable Gegenbauer matrix polynomials

Pages: 171-191
Received: 9 November 2015
Accepted in revised form: 27 April 2017
Mathematics Subject Classification (2010): Primary 33C25; Secondary 15A60.
Keywords: Hypergeometric matrix function, Multi-variable Gegenbauer matrix polynomials, generating matrix function, recurrence relations, differential equations.
Author address:
[a]: Aden University, Department of Mathematics, Kohrmakssar, P.O. Box 6014, Aden, Yemen

Full Text (PDF)

Abstract: New generalized form of the multi-variable Gegenbauer matrix polynomials are introduced using the integral representation method. Certain properties for these new generalized multi-variable Gegenbauer matrix polynomials such as differential relations, operational and hypergeometric matrix representations, generating matrix functions are derived. Further,some formulas in [18] have been corrected.

References
[1]
R. Aktaş, A note on multivariable Humbert matrix Polynomials, Gazi University Journal of Science 27 (2014), 747-754. http://gujs.gazi.edu.tr/article/view/1060001393
[2]
R. Aktaş, A new multivariable extension of Humbert matrix polynomials, AIP Conference Proceedings 1558 (2013), 1128-1131. DOI: 10.1063/1.4825706
[3]
R. Aktaş and E. Erkuş-Duman, On a family of multivariate modified Humbert polynomials, The Scientific World Journal 2013 (2013), Article ID 187452, 12 pp. DOI: 10.1155/2013/187452
[4]
R. Aktaş, B. çekim and R. şahin, The matrix version for the multivariable Humbert polynomials, Miskolc Math. Notes 13 (2012), 197-208. MR3002623
[5]
M. G. Bin-Saad, Symbolic operational images and decomposition formulas for hypergeometric functions, J. Math. Anal. Appl. 376 (2011), 451-468. MR2747770
[6]
G. Dattoli, S. Lorenzutta and C. Cesarano, From Hermite to Humbert polynomials, Rend. Istit. Mat. Univ. Trieste 35 (2003), 37-48. MR2111619
[7]
E. Defez and L. Jódar, Some applications of the Hermite matrix polynomials series expansions, J. Comput. Appl. Math. 99 (1998), 105-117. MR1662687
[8]
E. Defez and L. Jódar, Chebyshev matrix polynomials and second order matrix differential equations, Util. Math. 61 (2002), 107-123. MR1899321
[9]
E. Defez, L. Jódar and A. Law, Jacobi matrix differential equation, polynomial solutions, and their properties, Comput. Math. Appl. 48 (2004), 789-803. MR2105252
10]
E. Defez, M. Tung and J. Sastre, Improvement on the bound of Hermite matrix polynomials, Linear Algebra Appl. 434 (2011), 1910-1919. MR2775781
[11]
A. J. Durán and F. A. Grünbaum, A survey on orthogonal matrix polynomials satisfying second order differential equations, J. Comput. Appl. Math. 178 (2005), 169-190. MR2127878
[12]
A. F. Horadam, Gegenbauer polynomials revisited, Fibonacci Quart. 23 (1985), 294-299. MR0811310
[13]
A. F. Horadam and S. Pethe, Polynomials associated with Gegenbauer polynomials, Fibonacci Quart. 19 (1981), 393-398. MR0644696
[14]
L. Jódar and J. C. Cortés, On the hypergeometric matrix function, J. Comput. Appl. Math. 99 (1998), 205-217. MR1662696
[15]
L. Jódar, R. Company and E. Navarro, Laguerre matrix polynomials and systems of second-order differential equations, Appl. Numer. Math. 15 (1994), 53-63. MR1290597
[16]
L. Jódar, R. Company and E. Ponsoda, Orthogonal matrix polynomials and systems of second order differential equations, Differential Equations Dynam. Systems 3 (1995), 269-288. MR1386749
[17]
L. Jódar and R. Company, Hermite matrix polynomials and second order matrix differential equations, Approx. Theory Appl. (N.S.) 12 (1996), 20-30. MR1465570
[18]
G. S. Kahmmash, A study of a two variables Gegenbauer matrix polynomials and second order matrix partial differential equations, Int. J. Math. Anal. (Ruse) 2 (2008), 807-821. MR2482765
[19]
K. S. Miller and B. Ross, An introduction to the fractional calculus and fractional differential equations, John Wiley & Sons, New York, 1993. MR1219954
[20]
G. V. Milovanović and G. Djordjević, On some properties of Humbert's polynomials, Fibonaci Quart. 25 (1987), 356-360. MR0911986
[21]
M. A. Pathan, M. G. Bin-Saad and F. Al-Sarahi, On matrix polynomials associated with Humbert polynomials, J. Korean Soc. Math. Educ. Ser. B Pure Appl. Math. 21 (2014), 207-218. MR3242319
[22]
E. D. Rainville, Special functions, The Macmillan Co., New York, 1960. MR0107725
[23]
J. Sastre, J. Ibáñez, E. Defez and P. Ruiz, Computing matrix functions solving coupled differential models, Math. Comput. Modelling 50 (2009), 831-839. MR2569246
[24]
J. Sastre, J. Ibáñez, E. Defez and P. Ruiz, Efficient orthogonal matrix polynomial based method for computing matrix exponential, Appl. Math. Comput. 217 (2011), 6451-6463. MR2773234
[25]
K. A. M. Sayyed, M. S. Metwally and R. S. Batahan, Gegenbauer matrix polynomials and second order matrix differential equations, Divulg. Mat. 12 (2004), 101-115. MR2123993
[26]
V. Soler, A study of a two variables Gegenbauer matrix polynomials and second order matrix partial differential equations. A comment, Int. J. Math. Anal. (Ruse) 7 (2013), 973-976. MR3024295
[27]
H. M. Srivastava and P. W. Karlsson, Multiple Gaussian hypergeometric series, Ellis Horwood Ser. Math. Appl., Halsted Press, New York, 1985. MR0834385
[28]
H. M. Srivastava and H. L. Manocha, A treatise on generating functions, Ellis Horwood Ser. Math. Appl., Halsted Press, New York, 1984. MR0750112
[29]
A. Wünsche, Hermite and Laguerre 2D polynomials and 2D functions with applications, in "Advanced special functions and integration methods" (Melfi, 2000), G. Dattoli, H. M. Srivastava and C. Cesarano, eds., Proc. Melfi Sch. Adv. Top. Math. Phys., 2, Aracne, Rome, 2001, 157-197. MR1857502


Home Riv.Mat.Univ.Parma