Riv. Mat. Univ. Parma, Vol. 9, No. 1, 2018
Reza Mirzaie ^{[a]}
Riemannian \(G\)manifolds of constant negative curvature whose all orbits are principal
Pages: 4551
Received: 24 February 2018
Accepted in revised form: 7 August 2018
Mathematics Subject Classification (2010): 53C30, 57S25.
Keywords: Riemannian manifold, Lie group, Isometry.
Author address:
[a]: Department of Pure Mathematics, Faculty of Science, Imam Khomeini International University (IKIU), Qazvin, Iran
Full Text (PDF)
Abstract:
We give a topological classification on Riemannian \(G\)manifolds of constant
negative curvature and their orbits, under the condition that all orbits are principal.
References
 [1]

J. Berndt and M. Brück,
Cohomogeneity one actions on hyperbolic spaces,
J. Reine Angew. Math. 541 (2001), 209235.
MR1876290
 [2]

J. Berndt and H. Tamaru,
Homogeneous codimension one foliations on noncompact symmetric spaces,
J. Differential Geom. 63 (2003), 140.
MR2015258
 [3]

R. L. Bishop and B. O'Neill,
Manifolds of negative curvature,
Trans. Amer. Math. Soc. 145 (1969), 149.
MR0251664
 [4]

B. H. Bowditch,
Discrete parabolic groups,
J. Differential Geom. 38 (1993), 559583.
MR1243787
 [5]

G. E. Bredon,
Introduction to compact transformation groups,
Pure and Applied Mathematics, 46,
Academic Press, New YorkLondon, 1972.
MR0413144
 [6]

W. Byers,
Isometry groups of manifolds of negative curvature,
Proc. Amer. Math. Soc. 54 (1976), 281285.
MR0390960
 [7]

J. Dadok,
Polar coordinates induced by actions of compact Lie groups,
Trans. Amer. Math. Soc. 288 (1985), 125137.
MR0773051
 [8]

M. P. Do Carmo,
Riemannian geometry, Math. Theory Appl.,
Birkhäuser, Boston, MA, 1992.
MR1138207
 [9]

P. Eberlein and B. O'Neill,
Visibility manifolds,
Pacific J. Math. 46 (1973), 45109.
MR0336648
 [10]

P. Eberlein,
Geodesic flows in manifolds of nonpositive curvature,
http://www.unc.edu/math/Faculty/pbe/AMS_Summer.pdf
 [11]

E. Heintze,
On homogeneous manifolds of negative curvature,
Math. Ann. 211 (1974), 2334.
MR0353210
 [12]

S. Kobayashi,
Homogeneous Riemannian manifolds of negative curvature,
Tôhoku Math. J. (2) 14 (1962), 413415.
MR0148015
 [13]

P. W. Michor,
Isometric actions of Lie groups and invariants,
Lecture course at the University of Vienna 1996/97.
 [14]

R. Mirzaie,
On negatively curved \(G\)manifolds of low cohomogeneity,
Hokkaido Math. J. 38 (2009), 797803.
MR2561960
 [15]

R. Mirzaie,
On Riemannian manifolds of constant negative curvature,
J. Korean Math. Soc. 48 (2011), 2321.
MR2778023
 [16]

R. Mirzaie,
Actions without nontrivial singular orbits on Riemannian manifolds of negative curvature,
Acta Math. Hungar. 147 (2015), 172178.
MR3391520
 [17]

R. Mirzaie and S. M. B. Kashani,
On cohomogeneity one flat Riemannian manifolds,
Glasg. Math. J. 44 (2002), 185190.
MR1902396
 [18]

R. Mirzaie,
On orbits of isometric actions on flat Riemannian manifolds,
Kyushu J. Math. 65 (2011), 383393.
MR2977766
 [19]

B. O'Neill,
SemiRiemannian geometry, With applications to relativity,
Pure Appl. Math., 103,
Academic Press, New York, 1983.
MR0719023
 [20]

R. S. Palais and C.L. Terng,
A general theory of canonical forms,
Trans. Amer. Math. Soc. 300 (1987), 771789.
MR0876478
 [21]

F. Podestà and A. Spiro,
Some topological properties of cohomogeneity one manifolds with negative curvature,
Ann. Global Anal. Geom. 14 (1996), 6979.
MR1375067
 [22]

A. J. Di Scala and C. Olmos,
The geometry of homogeneous submanifolds of hyperbolic space,
Math. Z. 237 (2001), 199209.
MR1836778
 [23]

A. J. Di Scala and C. Olmos,
A geometric proof of the KarpelevichMostow theorem,
Bull. Lond. Math. Soc. 41 (2009), 634638.
MR2521358
 [24]

J. A. Wolf,
Homogeneity and bounded isometries in manifolds of negative curvature,
Illinois J. Math. 8 (1964), 1418.
MR0163262
Home Riv.Mat.Univ.Parma