Riv. Mat. Univ. Parma, Vol. 9, No. 1, 2018

Reza Mirzaie [a]

Riemannian \(G\)-manifolds of constant negative curvature whose all orbits are principal

Pages: 45-51
Received: 24 February 2018
Accepted in revised form: 7 August 2018
Mathematics Subject Classification (2010): 53C30, 57S25.
Keywords: Riemannian manifold, Lie group, Isometry.
Author address:
[a]: Department of Pure Mathematics, Faculty of Science, Imam Khomeini International University (IKIU), Qazvin, Iran

Full Text (PDF)

Abstract: We give a topological classification on Riemannian \(G\)-manifolds of constant negative curvature and their orbits, under the condition that all orbits are principal.

J. Berndt and M. Brück, Cohomogeneity one actions on hyperbolic spaces, J. Reine Angew. Math. 541 (2001), 209-235. MR1876290
J. Berndt and H. Tamaru, Homogeneous codimension one foliations on noncompact symmetric spaces, J. Differential Geom. 63 (2003), 1-40. MR2015258
R. L. Bishop and B. O'Neill, Manifolds of negative curvature, Trans. Amer. Math. Soc. 145 (1969), 1-49. MR0251664
B. H. Bowditch, Discrete parabolic groups, J. Differential Geom. 38 (1993), 559-583. MR1243787
G. E. Bredon, Introduction to compact transformation groups, Pure and Applied Mathematics, 46, Academic Press, New York-London, 1972. MR0413144
W. Byers, Isometry groups of manifolds of negative curvature, Proc. Amer. Math. Soc. 54 (1976), 281-285. MR0390960
J. Dadok, Polar coordinates induced by actions of compact Lie groups, Trans. Amer. Math. Soc. 288 (1985), 125-137. MR0773051
M. P. Do Carmo, Riemannian geometry, Math. Theory Appl., Birkhäuser, Boston, MA, 1992. MR1138207
P. Eberlein and B. O'Neill, Visibility manifolds, Pacific J. Math. 46 (1973), 45-109. MR0336648
P. Eberlein, Geodesic flows in manifolds of nonpositive curvature, http://www.unc.edu/math/Faculty/pbe/AMS_Summer.pdf
E. Heintze, On homogeneous manifolds of negative curvature, Math. Ann. 211 (1974), 23-34. MR0353210
S. Kobayashi, Homogeneous Riemannian manifolds of negative curvature, Tôhoku Math. J. (2) 14 (1962), 413-415. MR0148015
P. W. Michor, Isometric actions of Lie groups and invariants, Lecture course at the University of Vienna 1996/97.
R. Mirzaie, On negatively curved \(G\)-manifolds of low cohomogeneity, Hokkaido Math. J. 38 (2009), 797-803. MR2561960
R. Mirzaie, On Riemannian manifolds of constant negative curvature, J. Korean Math. Soc. 48 (2011), 23-21. MR2778023
R. Mirzaie, Actions without nontrivial singular orbits on Riemannian manifolds of negative curvature, Acta Math. Hungar. 147 (2015), 172-178. MR3391520
R. Mirzaie and S. M. B. Kashani, On cohomogeneity one flat Riemannian manifolds, Glasg. Math. J. 44 (2002), 185-190. MR1902396
R. Mirzaie, On orbits of isometric actions on flat Riemannian manifolds, Kyushu J. Math. 65 (2011), 383-393. MR2977766
B. O'Neill, Semi-Riemannian geometry, With applications to relativity, Pure Appl. Math., 103, Academic Press, New York, 1983. MR0719023
R. S. Palais and C.-L. Terng, A general theory of canonical forms, Trans. Amer. Math. Soc. 300 (1987), 771-789. MR0876478
F. Podestà and A. Spiro, Some topological properties of cohomogeneity one manifolds with negative curvature, Ann. Global Anal. Geom. 14 (1996), 69-79. MR1375067
A. J. Di Scala and C. Olmos, The geometry of homogeneous submanifolds of hyperbolic space, Math. Z. 237 (2001), 199-209. MR1836778
A. J. Di Scala and C. Olmos, A geometric proof of the Karpelevich-Mostow theorem, Bull. Lond. Math. Soc. 41 (2009), 634-638. MR2521358
J. A. Wolf, Homogeneity and bounded isometries in manifolds of negative curvature, Illinois J. Math. 8 (1964), 14-18. MR0163262

Home Riv.Mat.Univ.Parma