Riv. Mat. Univ. Parma, Vol. 9, No. 1, 2018
Aydin Gezer^{[a]} and Erkan Karakaş^{[b]}
On a semisymmetric metric connection on the tangent bundle with the complete lift metric
Pages: 7384
Received: 8 March 2018
Accepted in revised version: 25 May 2018
Mathematics Subject Classification (2010): 53B20, 53C07, 53C35.
Keywords: Semisymmetric metric connection, tangent bundle, complete lift metric.
Authors address:
[a], [b]: Ataturk University, Faculty of Science, Department of Mathematics, 25240, ErzurumTurkey
Full Text (PDF)
Abstract:
In this paper, we define a semisymmetric metric connection
on the tangent bundle equipped with complete lift metric. We compute
the curvature tensors of this connection and study their properties. Also
we investigate conditions for the tangent bundle to be locally conformally
flat with respect to this connection.
References
 [1]

A. Friedmann and J. A. Schouten,
Über die Geometrie der halbsymmetrischen Übertragungen,
Math. Z. 21 (1924), 211223.
MR1544701
 [2]

H. A. Hayden,
Subspaces of a space with torsion,
Proc. London Math. Soc. (2) 34 (1932), 2750.
MR1576150
 [3]

T. Imai,
Notes on semisymmetric metric connections,
Commemoration volumes for Prof. Dr. Akitsugu Kawaguchi's seventieth birthday, Vol. I,
Tensor (N.S.) 24 (1972), 293296.
MR0375121
 [4]

T. Imai,
Hypersurfaces of a Riemannian manifold with semisymmetric metric connection,
Tensor (N.S.) 23 (1972), 300306.
MR0336597
 [5]

Z. I. Szabó,
Structure theorems on Riemannian spaces satisfying \(R(X,Y)\cdot R=0\), I, The local version,
J. Differential Geom. 17 (1982), 531582.
MR0683165
 [6]

K. Yano,
On semisymmetric metric connection,
Rev. Roumaine Math. Pures Appl. 15 (1970), 15791586.
MR0275321
 [7]

K. Yano and S. Ishihara,
Tangent and cotangent bundles: differential geometry,
Pure and Applied Mathematics, 16,
Marcel Dekker, New York, 1973.
MR0350650
Home Riv.Mat.Univ.Parma