Riv. Mat. Univ. Parma, Vol. 9, No. 2, 2018

Debora Impera [a] and Emilio Musso [a]

Space-like Willmore immersions

Pages: 255-282
Received: 19 July 2018
Accepted in revised form: 27 November 2018
Mathematics Subject Classification (2010): 53C50, 53C42, 53A10, 53A10.
Keywords: Conformal Lorentzian geometry, Einstein Universe, space-like Willmore immersions.
Authors address:
[a]: Dipartimento di Matematica, Politecnico di Torino, Corso Duca degli Abruzzi 24, I-10129 Torino, Italy

Full Text (PDF)

Abstract: In this survey paper we implement the method of moving frames to the Lorentzian setting. As an application, we are able to give a geometrical proof of the fact that a space-like Willmore immersion of a compact surface in the oriented, time-oriented conformal compactification of the Minkowski 3-space must be totally umbilical.

References
[1]
L. J. Alías and B. Palmer, Conformal geometry of surfaces in Lorentzian space forms, Geom. Dedicata 60 (1996), no. 3, 301–315. MR1384435
[2]
L. J. Alías and B. Palmer, Deformations of stationary surfaces, Classical Quantum Gravity 14 (1997), no. 8, 2107–2111. MR1468569
[3]
T. Barbot, V. Charette, T. Drumm, W. M. Goldman and K. Melnick, A primer on the \((2+1)\)-Einstein universe, in "Recent developments in pseudo-Riemannian geometry", ESI Lect. Math. Phys., Eur. Math. Soc., Zürich, 2008, 179–229. MR2436232
[4]
W. Blaschke, Vorlesungen über Differentialgeometrie und geometrische Grundlagen von Einsteins Relativitätstheorie, B. 3, bearbeitet von G. Thomsen, J. Springer, Berlin, 1929. zbMATH
[5]
G. E. Bredon, Introduction to compact transformation groups, Pure and Applied Mathematics, 46, Academic Press, New York-London, 1972. MR0413144
[6]
R. L. Bryant, A duality theorem for Willmore surfaces, J. Differential Geom. 20 (1984), 23–53. MR0772125
[7]
R. L. Bryant, Surfaces in conformal geometry, Proc. Sympos. Pure Math., 48, Amer. Math. Soc., Providence, RI, 1988, 227–240. MR0974338
[8]
Y. Deng and C. Wang, Time-like Willmore surfaces in Lorentzian \(3\)-space, Sci. China Ser. A 49 (2006), no. 1, 75–85. MR2220786
[9]
B. A. Dubrovin, A. T. Fomenko and S. P. Novikov, Modern geometry–methods and applications. Part I, 2nd ed., Graduate Texts in Mathematics, 93, Springer-Verlag, New York, 1992. MR1138462
[10]
A. Dzhalilov, E. Musso and L. Nicolodi, Conformal geometry of timelike curves in the \((2+1)\)-Einstein universe, Nonlinear Anal. 143 (2016), 224–255. MR3516832
[11]
A. Einstein, Kosmologische Betrachtungen zur allgemeinen Relativitätstheorie, Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften, Berlin, 1917, 142–152. zbMATH
[12]
J. H. Eshenburg, Willmore Surfaces and Möbius geometry, unpublished manuscript, 1984.
[13]
O. Eshkobilov, E. Musso and L. Nicolodi, Lorentz manifolds whose restricted conformal group has maximal dimension, preprint, 2018.
[14]
C. Frances, Géometrie et dynamique lorentziennes conformes, Thése, E.N.S. Lyon, 2002.
[15]
C. Frances, Sur les variétés lorentziennes dont le group conforme est essentiel, Math. Ann. 332 (2005), no. 1, 103–119. MR2139253
[16]
S. W. Hawking and G. F. R. Ellis, The large scale structure of space-time, Cambridge Monographs on Mathematical Physics, 1, Cambridge University Press, London–New York, 1973. MR0424186
[17]
G. R. Jensen, E. Musso and L. Nicolodi, Surfaces in classical geometries, A treatment by moving frames, Universitext, Springer, Cham, 2016. MR3468639
[18]
G. R. Jensen, M. Rigoli and K. Yang, Holomorphic curves in the complex quadric, Bull. Austral. Math. Soc. 35 (1987), no. 1, 125–148. MR0875513
[19]
S. Kobayashi, Differential geometry of complex vector bundles, Publications of the Mathematical Society of Japan, 15, Princeton University Press, Princeton, NJ, 1987.
[20]
F. C. Marques and A. Neves, Min-max theory and the Willmore conjecture, Ann. of Math. 179 (2014), no. 2, 683–782. MR3152944
[21]
C. Nie, X. Ma and C. Wang, Conformal CMC-surfaces in Lorentzian space forms, Chin. Ann. Math. Ser. B 28 (2007), no. 3, 299–310. MR2339435
[22]
B. Palmer, Spacelike constant mean curvature surfaces in pseudo-Riemannian space forms, Ann. Global Anal. Geom. 8 (1990), no. 3, 217–226. MR1089235
[23]
R. Penrose, Cycles of time. An extraordinary new view of the universe, Alfred A. Knopf, New York, 2010. MR2858244
[24]
R. Penrose, On the gravitization of quantum mechanics 2: Conformal cyclic cosmology, Found. Phys. 44 (2014), no. 8, 873-890. DOI
[25]
J. Rawnsley, On the universal covering group of the real symplectic group, J. Geom. Phys. 62 (2012), no. 10, 2044–2058. MR2944792
[26]
G. Thomsen, über konforme Geometrie I: Grundlagen der konformen flächentheorie, Abh. Math. Sem. Hamburg 3 (1924), 31–56. DOI
[27]
P. Tod, Penrose's Weyl curvature hypothesis and conformally-cyclic cosmology, J. Phys.: Conf. Ser. 229 (2010), no. 1, 012013. DOI
[28]
P. Wang, Blaschke's problem for timelike surfaces in pseudo-Riemannian space forms, Int. J. Geom. Methods Mod. Phys. 7 (2010), no. 7, 1147–1158. MR2749382
[29]
F. W. Warner, Foundations of differentiable manifolds and Lie groups, Graduate Texts in Mathematics, 94, Springer-Verlag, New York-Berlin, 1983. MR0722297
[30]
R. O. Wells, Jr., Differential analysis on complex manifolds, 2nd ed., Graduate Texts in Mathematics, 65, Springer-Verlag, New York-Berlin, 1980. MR0608414


Home Riv.Mat.Univ.Parma