Riv. Mat. Univ. Parma, Vol. 12, No. 2, 2021

Venkatesha Venkatesha [a], Huchchappa Aruna Kumara [a] and Devaraja Mallesha Naik [b]

On \(m\)-quasi Einstein almost Kenmotsu manifolds
Pages: 287-299
Received: 8 January 2021
Accepted in revised form: 8 June 2021
Mathematics Subject Classification: 53C25, 53C15, 53D10.
Keywords: \(m\)-quasi Einstein metric, Ricci solitons, Kenmotsu manifolds, almost Kenmotsu \((\kappa,\mu)'\)-manifolds, Einstein manifolds.
Authors address:
[a]: Department of Mathematics, Kuvempu University, Shankaraghatta, Karnataka 577-451, India.
[b]: Department of Mathematics, CHRIST (Deemed to be University), Bangalore (Bengaluru), Karnataka 560029, India.

Full Text (PDF)

V. Venkatesha and H.A. Kumara are thankful to Department of Science and Technology, New Delhi for financial assistance to the Department of Mathematics, Kuvempu University under the FIST program (Ref. No. SR/FST/MS-I/2018-23(C)).
Abstract: In this article, we consider \(m\)-quasi Einstein structures on two class of almost Kenmotsu manifolds. Firstly, we study a closed \(m\)-quasi Einstein metric on a Kenmotsu manifold. Next, we proved that if a Kenmotsu manifold \(M\) admits an \(m\)-quasi Einstein metric with conformal vector field \(V\), then \(M\) is Einstein. Finally, we prove that a non-Kenmotsu almost Kenmotsu \((\kappa,\mu)'\)-manifold admitting a closed \(m\)-quasi Einstein metric is locally isometric to the Riemannian product \(\mathbb{H}^{n+1}\times\mathbb{R}^n\), provided that \(\frac{\lambda-\kappa(2n+m)}{2m}=1\).

D. Bakry and M. Émery, Diffusions hypercontractives, (French), Séminaire de probabilités, XIX, 1983/84, Lecture Notes in Math., 1123, Springer, Berlin, 1985, 177-206. MR0889476
A. Barros and E. Ribeiro, Integral formulae on quasi-Einstein manifolds and applications, Glasg. Math. J. 54 (2012), 213-223. MR2862399
A. L. Besse, Einstein Manifolds, Reprint of the 1987 ed., Springer-Verlag, Berlin, 2008. MR2371700
J. Case, Y.-J. Shu and G. Wei, Rigidity of quasi-Einstein metrics, Differential Geom. Appl. 29 (2011), 93-100. MR2784291
X. Chen, Quasi-Einstein structures and almost cosymplectic manifolds, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 114 (2020), 1-14. MR4054927
J. T. Cho and R. Sharma, Contact geometry and Ricci solitons, Int. J. Geom. Methods Mod. Phys. 7 (2010), 951-960. MR2735600
U. C. De and K. Mandal, On a type of almost Kenmotsu manifolds with nullity distributions, Arab J. Math. Sci. 23 (2017), 109-123. MR3662970
U. C. De, Y. J. Suh and P. Majhi, Ricci solitons on \(\eta\)-Einstein contact manifolds, Filomat 32 (2018), 4679-4687. MR3897335
G. Dileo and A. M. Pastore, Almost Kenmotsu manifolds and local symmetry, Bull. Belg. Math. Soc. Simon Stevin 14 (2007), 343-354. MR2341570
G. Dileo and A. M. Pastore, Almost Kenmotsu manifolds and nullity distributions, J. Geom. 93 (2009), 46-61. MR2501208
A. Ghosh, \((m,\rho)\)-quasi-Einstein metrics in the frame-work of \(K\)-contact manifolds, Math. Phys. Anal. Geom. 17 (2014), 369-376. MR3291935
A. Ghosh, Generalized \(m\)-quasi-Einstein metric within the framework of Sasakian and \(K\)-contact manifolds, Ann. Polon. Math. 115 (2015), 33-41. MR3392696
A. Ghosh, \(m\)-quasi-Einstein metric and contact geometry, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 113 (2019), 2587-2600. MR3956269
A. Ghosh, Quasi-Einstein contact metric manifolds, Glasg. Math. J. 57 (2015), 569-577. MR3395334
A. Ghosh, Ricci almost soliton and almost Yamabe soliton on Kenmotsu manifold, Asian-Eur. J. Math. 14 (2021), Paper No. 2150130, 19 pp. MR4297287
R. S. Hamilton, The Ricci flow on surfaces, Mathematics and general relativity, Contemp. Math., 71, Amer. Math. Soc., Providence, RI, 1988, 237-262. MR0954419
D. Janssens and L. Vanhecke, Almost contact structures and curvature tensors, Kodai Math. J. 4 (1981), 1-27. MR0615665
K. Kenmotsu, A class of almost contact Riemannian manifolds, Tohoku Math. J. 24 (1972), 93-103. MR0319102
M. Limoncu, Modifications of the Ricci tensor and applications, Arch. Math. (Basel) 95 (2010), 191-199. MR2674255
D. M. Naik, V. Venkatesha and H. A. Kumara, Some results on almost Kenmotsu manifolds, Note Mat. 40 (2020), 87-100. MR4165275
G. Perelman, The entropy formula for the Ricci flow and its geometric applications, arXiv:math.DG/0211159, preprint, 2002.
R. Sharma, Certain results on \(K\)-contact and \((\kappa,\mu)\)-contact manifolds, J. Geom. 89 (2008), 138-147. MR2457028
Y. J. Suh and U. C. De, Yamabe solitons and Ricci solitons on almost co-Kähler manifolds, Canad. Math. Bull. 62 (2019), 653-661. MR3998747
V. Venkatesha and H. A. Kumara, Gradient \(\rho\)-Einstein soliton on almost Kenmotsu manifolds, Ann. Univ. Ferrara Sez. VII Sci. Mat. 65 (2019), 375-388. MR4026431
V. Venkatesha, D. M. Naik and H. A. Kumara, \(*\)-Ricci soliton and gradient almost \(*\)-Ricci soliton on Kenmotsu manifolds, Math. Slovaca 69 (2019), 1447-1458. MR4045531
V. Venkatesha, H. A. Kumara and D. M. Naik, Riemann solitons and almost Riemann solitons on almost Kenmotsu manifolds, Int. J. Geom. Methods Mod. Phys. 17 (2020), 2050105, 22 pp. MR4116209
V. Venkatesha, D. M. Naik and A.-T. Vanli, Second order parallel tensor on almost Kenmotsu manifolds, Kyungpook Math. J. 61 (2021), 191-203. MR4234005
Y. Wang, Almost Kenmotsu \((\kappa,\mu)'\)-manifolds with Yamabe solitons, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 115 (2021), Paper No. 14, 8 pp. MR4169911
Y. Wang, Ricci solitons on almost co-Kähler manifolds, Canad. Math. Bull. 62 (2019), 912-922. MR4028497
Y. Wang, U. C. De and X. Liu, Gradient Ricci solitons on almost Kenmotsu manifolds, Publ. Inst. Math. (Beograd) (N.S.) 98 (2015), 227-235. MR3467937
Y. Wang and X. Liu, Riemannian semisymmetric almost Kenmotsu manifolds and nullity distributions, Ann. Polon. Math. 112 (2014), 37-46. MR3244913
Y. Wang and X. Liu, On almost Kenmotsu manifolds satisfying some nullity distributions, Proc. Nat. Acad. Sci. India Sect. A 86 (2016), 347-353. MR3536118

Home Riv.Mat.Univ.Parma