Riv. Mat. Univ. Parma, Vol. 12, No. 2, 2021

Horst Alzer [a] and Man Kam Kwong [b]

Inequalities for sine and cosine polynomials
Pages: 301-317
Received: 13 February 2021
Accepted in revised form: 23 March 2021
Mathematics Subject Classification: 26D05, 26D15, 33B10.
Keywords: Sine polynomials, cosine polynomials, inequalities.
Authors address:
[a]: Morsbacher Strasse 10, 51545 Waldbröl, Germany.
[b]: The Hong Kong Polytechnic University, Hunghom, Hong Kong.

Full Text (PDF)

In this paper, we prove that, letting \(\lambda\) be a real number,

\((i) \qquad \lambda \, \sum_{k=1}^n (-1)^k \sin(kx) \leq \sum_{k=1}^n \frac{\sin(kx)}{k} \)

is valid for all \(n\geq 1\) and \(x\in [0,\pi]\) if and only if \(\lambda \in [0,2]\). This extends the classical Fejér-Jackson inequality which states that \((i)\) holds for \(\lambda=0\). An application of \((i)\) reveals if \(a>0\) and \(b\) are real numbers, then

\((ii) \qquad \frac{41}{96}+ \sum_{k=1}^n \frac{\cos(kx)}{k+1} \geq a \bigl( \cos(x)+b\bigr)^2 \)

holds for all \(n\geq 2\) and \(x\in[0,\pi]\) if and only if \(a\leq 2/75\) and \(b=3/8\). This refines a result of Koumandos (2001) who proved that the expression on the left-hand side of \((ii)\) is nonnegative for all \(n\geq 2\) and \(x\in[0,\pi]\). The cosine polynomial in \((ii)\) was first studied by Rogosinski and Szegö in 1928.

H. Alzer and M. K. Kwong, On Young's inequality, J. Math. Anal. Appl. 469 (2019), 480-492. MR3860434
R. Askey, Orthogonal polynomials and special functions, Reg. Conf. Ser. Appl. Math., 21, SIAM, Philadelphia, 1975. MR0481145
R. Askey and G. Gasper, Inequalities for polynomials, in ''The Bieberbach conjecture'', A. Baernstein II et al., eds., Math. Surveys Monogr., 21, Amer. Math. Soc., Providence, RI, 1986, 7-32. MR0875228
R. W. Barnard, U. C. Jayatilake and A. Yu. Solynin, Brannan's conjecture and trigonometric sums, Proc. Amer. Math. Soc. 143 (2015), 2117-2128. MR3314120
G. Brown and S. Koumandos, On a monotonic trigonometric sum, Monatsh. Math. 123 (1997), 109-119. MR1430498
N. Derevyanko, K. Kovalenko and M. Zhukovskii, On a category of cotangent sums related to the Nyman-Beurling criterion for the Riemann hypothesis, in ''Trigonometric sums and their applications'', A. Raigorodskii, M. Th. Rassias, eds., Springer, Cham, 2020, 1-28. DOI
D. K. Dimitrov and C. A. Merlo, Nonnegative trigonometric polynomials, Constr. Approx. 18 (2002), 117-143. MR1866382
J. Z. Y. Fong, T. Y. Lee and P. X. Wong, A functional bound for Young's cosine polynomial, Acta Math. Hungar. 160 (2020), 337-342. MR4075405
D. Jackson, Über eine trigonometrische Summe, Rend. Circ. Mat. Palermo 32 (1911), 257-262. DOI
S. Koumandos, Some inequalities for cosine sums, Math. Inequal. Appl. 4 (2001), 267-279. MR1823747
S. Koumandos, Inequalities for trigonometric sums, in ''Nonlinear analysis'', P. M. Pardalos et al., eds., Springer Optim. Appl., 68, Springer, New York, 2012, 387-416. MR2962651
M. K. Kwong, Improved Vietoris sine inequalities for non-monotone, non-decaying coefficients, arXiv:1504.06705, preprint, 2015.
M. K. Kwong, An improved Vietoris sine inequality, J. Approx. Theory 189 (2015), 29-43. MR3280668
E. Landau, Über eine trigonometrische Ungleichung, Math. Z. 37 (1933), 36. MR1545379
A. Lupas, Advanced problem 6585, Amer. Math. Monthly 95 (1988), 880-881; 97 (1990), 859-860. MR1541409 , DOI ; MR1541792 , DOI
H. Maier, M. Th. Rassias and A. Raigorodskii, The maximum of cotangent sums related to the Nyman-Beurling criterion for the Riemann hypothesis, in ''Trigonometric sums and their applications'', A. Raigorodskii, M. Th. Rassias, eds., Springer, Cham, 2020, 149-158. DOI
G. V. Milovanović, D. S. Mitrinović and Th. M. Rassias, Topics in polynomials: extremal problems, inequalities, zeros, World Scientific Publishing, River Edge, NJ, 1994. MR1298187
A. Raigorodskii and M. Th. Rassias, eds., Trigonometric sums and their applications, Springer, Cham, 2020. DOI
W. Rogosinski and G. Szegö, Über die Abschnitte von Potenzreihen, die in einem Kreise beschränkt bleiben, Math. Z. 28 (1928), 73-94. MR1544940
L. Vietoris, Über das Vorzeichen gewisser trigonometrischer Summen, Österr. Akad. Wiss., Math.-naturw. Kl., S.-Ber., Abt. II 167 (1958), 125-135; Österr. Akad. Wiss., Math.-naturw. Kl., Anz. 1959, 192-193. Zbl 0088.27402 ; Zbl 0090.04301
B. L. van der Waerden, Algebra I, Springer, Berlin, 1971. DOI
W. H. Young, On a certain series of Fourier, Proc. London Math. Soc. 11 (1913), 357-366. MR1577231

Home Riv.Mat.Univ.Parma