Riv. Mat. Univ. Parma, Vol. 12, No. 2, 2021

Ezio Venturino [a] and Sharon Zytynska [b]

Modelling multispecies interactions and horizontal transmission of aphid bacterial symbionts
Pages: 327-383
Received: 24 July 2021
Accepted in revised form: 7 December 2021
Mathematics Subject Classification: 92D40, 92D45, 92D25.
Keywords: Mathematical models, dynamical systems, equilibria, stability, aphids, pests, parasitoid wasps.
Authors address:
[a]: University of Torino, via Carlo Alberto 10, Member of the INdAM research group GNCS, Torino, 10123, Italy.
[c]: University of Liverpool, Department of Evolution, Ecology and Behaviour, Biosciences Building, Crown Street, Liverpool, L69 7ZB, UK.

Full Text (PDF)

EV has been partially supported by the project "Metodi numerici e computazionali per le scienze applicate" of the Dipartimento di Matematica "Giuseppe Peano". SZ has been supported by the British Ecological Society (SR16/1069) and a UKRI-BBSRC David Phillips Fellowship (BB/S010556/1). This research has been partially supported by the The European COST Action: FA 1405 - Food and Agriculture: Using three-way interactions between plants, microbes and arthropods to enhance crop protection and production.
Abstract: In this paper we formulate a model for the investigation of the infection of aphids by bacteria that protect them against parasitoid wasps. The model accounts for the possible transmission mechanisms that can originate in the environment. This includes horizontal transmission via parasitoid wasps and also short-term release of bacteria into the immediate environment after ladybird feeding. Mathematically, this corresponds to setting up a nonlinear dynamical system comprising all the relevant populations, and describing their possible mutual interactions via ordinary differential equations. A considerable effort is exerted in assessing the system's equilibria for feasibility and stability. The main theoretical result concerns the latter issue, for which the full set of the Routh-Hurwitz conditions are established analytically.

M. V. Balzan, Flowering banker plants for the delivery of multiple agroecosystem services, Arthropod-Plant Interactions 11 (2017), 743-754. DOI
R. L. Blackman and V. F. Eastop, Aphids on the world's herbaceous plants and shrubs, John Wiley & Sons, London, 2006.
D. J. N. Butler, EU expected to vote on pesticide ban after major scientific review, Nature 555 (2018), 150-151. Aticle
A. C. Darby and A. E. Douglas, Elucidation of the transmission patterns of an insect-borne bacterium, Appl. Environ. Microbiol. 69 (2003), 4403-4407. DOI
L. Gehrer and C. Vorburger, Parasitoids as vectors of facultative bacterial endosymbionts in aphids, Biol. Lett. 8 (2012), 613-615. DOI
J. Guo, S. Hatt, K. He, J. Chen, F. Francis and Z. Wang, Nine facultative endosymbionts in aphids. A review, J. Asia Pac. Entomol. 20 (2017), 794-801. DOI
J. L. Kovacs, C. Wolf, D. Voisin and S. Wolf, Evidence of indirect symbiont conferred protection against the predatory lady beetle Harmonia axyridis in the pea aphid, BMC ecology 17 (2017), art. 26. DOI
M. Kwiatkowski and C. Vorburger, Modeling the ecology of symbiont-mediated protection against parasites, The American Naturalist 179 (2012), 595-605. DOI
A. J. Lotka, Elements of mathematical biology, Dover Publications, New York, 1958. MR0094263
G. Malloch, J. Pickup, F. Highet, S. Foster, M. Williamson and B. Fenton, Assessment of the spread of pyrethroid resistant Sitobion avenae in the UK and an update on changes in the population structure of Myzus persicae in Scotland, Proceedings Crop Protection in Northern Britain 2016, 223-228. Article
T. R. Malthus, An essay on the principle of population, J. Johnson, London, 1798.
A. H. C. McLean, B. J. Parker, J. Hrček, L. M. Henry and H. C. J. Godfray, Insect symbionts in food webs, Philos. Trans. R. Soc. Lond. B Biol. Sci. 371 (2016), 20150325. DOI, Pubmed
N. A. Moran and H. E. Dunbar, Sexual acquisition of beneficial symbionts in aphids, Proc. Natl. Acad. Sci. USA 103 (2006), 12803-12806. DOI, JSTOR
K. M. Oliver, A. H. Smith and J. A. Russell, Defensive symbiosis in the real world - advancing ecological studies of heritable, protective bacteria in aphids and beyond, Functional Ecology 28 (2014), 341-355. DOI
A. H. Smith, P. Łukasik, M. P. O'Connor, A. Lee, G. Mayo, M. T. Drott, S. Doll, R. Tuttle, R. A. Disciullo, A. Messina, K. M. Oliver and J. A. Russell, Patterns, causes and consequences of defensive microbiome dynamics across multiple scales, Mol. Ecol. 24 (2015), 1135-1149. DOI, Pubmed
W. E. Snyder, S. N. Ballard, S. Yang, G. M. Clevenger, T. D. Miller, J. J. Ahn, T. D. Hatten and A. A. Berryman, Complementary biocontrol of aphids by the ladybird beetle Harmonia axyridis and the parasitoid Aphelinus asychis on greenhouse roses, Biological Control 30 (2004), 229-235. DOI
L. Sutter, M. Albrecht and P. Jeanneret, Landscape greening and local creation of wildflower strips and hedgerows promote multiple ecosystem services, J. Appl. Ecol. 55 (2018), 612-620. DOI
H. F. van Emden, R. Harrington, eds., Aphids as crop pests, Cabi, UK, 2017. DOI
F. J. F. Van Veen, C. B. Müller, J. K. Pell and H. C. J. Godfray, Food web structure of three guilds of natural enemies: predators, parasitoids and pathogens of aphids, J. Anim. Ecol. 77 (2008), 191-200. Article
E. Venturino, Ecoepidemiology: a more comprehensive view of population interactions, Math. Model. Nat. Phenom. 11 (2016), n. 1, 49-90. MR3452635
P. F. Verhulst, Recherches mathématiques sur la loi d'accroissement de la population, Nouveaux mémoires de l'Académie Royale des Sciences et Belles-Lettres de Bruxelles 18 (1845), 14-54. Article
V. Volterra and U. D'Ancona, La concorrenza vitale tra le specie dell'ambiente marino, VIIe Congr. Int. acquicult et de pêche, Paris 1931, 1-14.
C. Vorburger, Symbiont-conferred resistance to parasitoids in aphids-Challenges for biological control, Biological Control 116 (2018), 17-26. DOI
S. E. Zytynska and S. T. Meyer, Effects of biodiversity in agricultural landscapes on the protective microbiome of insects - a review, Entomol. Exp. Appl. 167 (2019), 2-13. DOI
S. E. Zytynska, K. Tighiouart and E. Frago, Benefits and costs of hosting facultative symbionts in plant-sucking insects: A meta-analysis, Mol. Ecol. 30 (2021), 2483-2494. Pubmed, DOI
S. E. Zytynska and W. W. Weisser, The natural occurrence of secondary bacterial symbionts in aphids, Ecol. Entomol. 41 (2016), 13-26. DOI
S. E. Zytynska and E. Venturino, Modelling the role of vector transmission of aphid bacterial endosymbionts and the protection against parasitoid wasps, in ''Trends in biomathematics: mathematical modeling for health, harvesting, and population dynamics'', Selected works presented at the BIOMAT Consortium Lectures, Morocco 2018, Rubem P. Mondaini, ed., Springer, 2019, 209-230. MR3971033

Home Riv.Mat.Univ.Parma