Riv. Mat. Univ. Parma, Vol. 13, No. 2, 2022

Adara M. Blaga [a] and Antonella Nannicini [b]

Statistical structures, α-connections and Generalized Geometry

Pages: 283-296
Received: 22 September 2021
Accepted: 24 May 2022
Mathematics Subject Classification: 53C15, 53C05, 53C38.
Keywords: Statistical structures, α-connections, generalized geometry.
Authors address:
[a]: West University of Timisoara, Department of Mathematics, Timisoara, Romania
[b]: University of Florence, Dipartimento di Matematica e Informatica “U. Dini”, Florence, Italy

This research was partially supported by the PRIN 2017 project ''Real and Complex Manifolds: Topology, Geometry and holomorphic dynamics'' (code 2017JZ2SW5)

Full Text (PDF)

Abstract: The main purpose of this paper is to describe how statistical structures fit perfectly into Generalized Geometry. Firstly, we will briefly present the properties of generalized pseudo-calibrated almost complex structures induced by statistical structures. Then we will characterize the integrability of generalized almost complex structures with respect to the bracket defined by the \(\alpha\)-connection, finding conditions under which the concept of integrability is \(\alpha\)-invariant. Finally, we consider a pair of generalized dual quasi-statistical connections \((\hat{\nabla},\hat{\nabla}^*)\) on the generalized tangent bundle \(TM\oplus T^*M\) and we provide conditions for \(TM\oplus T^*M\) with the \(\alpha\)-connections \((\hat{\nabla}^{(\alpha)},\hat{\nabla}^{(-\alpha)})\) induced by \((\hat{\nabla},\hat{\nabla}^*)\) to be conjugate Ricci-symmetric.

References
[1]
D. V. Alekseevsky, V. Cortés and C. Devchand, Special complex manifolds, J. Geom. Phys. 42 (2002), 85-105. MR1894078
[2]
S.-I. Amari, Information geometry and its applications, Appl. Math. Sci., 194, Springer, Tokyo, 2016. MR3495836
[3]
S.-I. Amari, Differential-geometrical methods in statistics, Lect. Notes Stat., 28, Springer-Verlag, New York, 1985. MR0788689
[4]
A. M. Blaga and A. Nannicini, Generalized quasi-statistical structures, Bull. Belg. Math. Soc. Simon Stevin 27 (2020), 731-754. MR4194220
[5]
A. M. Blaga and A. Nannicini, \(\alpha\)-connections in generalized geometry, J. Geom. Phys. 165 (2021), 104225, 17 pp. MR4244703
[6]
T. J. Courant, Dirac manifolds, Trans. Amer. Math. Soc. 319 (1990), 631-661. MR0998124
[7]
R. Cuingnet, J. A. Glaunès, M. Chupin, H. Benali and O. Colliot, Anatomical regularization on statistical manifolds for the classification of patients with Alzheimer's disease, Machine Learning in Medical Imaging, MLMI 2011, K. Suzuki, F. Wang, D. Shen, P. Yan, eds, Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, 7009 (2011), 201-208. DOI
[8]
D. S. Freed, Special Kähler manifolds, Comm. Math. Phys. 203 (1999), 31-52. MR1695113
[9]
M. Gualtieri, Generalized Complex Geometry, Ph.D. Thesis, Oxford University, 2003. arXiv
[10]
N. Hitchin, Generalized Calabi-Yau Manifolds, Quart. J. Math. 54 (2003), 281-308. MR2013140
[11]
M. Iscan and A. A. Salimov, On Kähler-Norden manifolds, Proc. Indian Acad. Sci. Math. Sci., 119 (2009), 71-80. MR2508491
[12]
A. Nannicini, Calibrated complex structures on the generalized tangent bundle of a Riemannian manifold, J. Geom. Phys. 56 (2006), 903-916. MR2225103
[13]
A. Nannicini, Generalized geometry of Norden manifolds, J. Geom. Phys. 99 (2016), 244-255. MR3428370
[14]
A. P. Norden, On a class of four-dimensional A-spaces, Izv. Vyssh. Uchebn. Zaved. Mat. (1960), 145-157. MR0170302 | MathNetRu


Home Riv.Mat.Univ.Parma