Riv. Mat. Univ. Parma, Vol. 13, No. 2, 2022

Liviu Ornea [a,b] and Misha Verbitsky [c,d]

Compact homogeneous locally conformally Kähler manifolds are Vaisman. A new proof

Pages: 439-448
Received: 30 November 2021
Accepted: 14 April 2022
Mathematics Subject Classification: 53C55, 53C30
Keywords: Locally conformally Kähler, homogeneous, LCK potential, Vaisman manifold, holomorphic action
Authors address:
[a]: University of Bucharest, Faculty of Mathematics and Informatics, Bucharest, Romania
[b]: Institute of Mathematics “Simion Stoilow” of the Romanian Academy, Bucharest, Romania
[c]: Instituto Nacional de Matemática Pura e Aplicada (IMPA), Rio de Janeiro, Brasil
[d]: Laboratory of Algebraic Geometry, Faculty of Mathematics, National Research University Higher School of Economics, Moscow, Russia

Full Text (PDF)

Abstract: An LCK manifold with potential is a complex manifold with a Kähler potential on its cover, such that any deck transformation multiplies the Kähler potential by a constant multiplier. We prove that any homogeneous LCK manifold admits a metric with LCK potential. This is used to give a new proof that any compact homogeneous LCK manifold is Vaisman.

L. Ornea is partially supported by Romanian Ministry of Education and Research, Program PN-III, Project number PN-III-P4-ID-PCE-2020-0025, Contract 30/04.02.2021.
M. Verbitsky is partially supported by the HSE University Basic Research Program, FAPERJ E-26/202.912/2018 and CNPq - Process 313608/2017-2.

References
[B]
F. A. Belgun, On the metric structure of non-Kähler complex surfaces, Math. Ann. 317 (2000), 1-40. MR1760667
[D]
O. Debarre, Higher-dimensional algebraic geometry, Universitext, Springer-Verlag, New York, 2001. MR1841091
[DO]
S. Dragomir and L. Ornea, Locally conformal Kähler geometry, Progress in Math. 155, Birkhäuser, Boston, MA, 1998. MR1481969
[Ga]
P. Gauduchon, La 1-forme de torsion d'une variété hermitienne compacte, Math. Ann. 267 (1984), 495-518. MR0742896
[GMO]
P. Gauduchon, A. Moroianu and L. Ornea, Compact homogeneous lcK manifolds are Vaisman, Math. Ann. 361 (2015), 1043-1048. MR3319558
[Gu]
D. Guan, A note on the classification of compact homogeneous locally conformal Kähler manifolds, J. Math. Stat. 13 (2017), no. 3, 261-267. DOI
[HK1]
K. Hasegawa and Y. Kamishima, Locally conformally Kähler structures on homogeneous spaces, Progr. Math., 308, Birkhäuser/Springer, Cham, 2015, 353-372. MR3331405
[HK2]
K. Hasegawa and Y. Kamishima, Compact homogeneous locally conformally Kähler manifolds, Osaka J. Math. 53 (2016), 683-703. MR3533463
[HK3]
K. Hasegawa and Y. Kamishima, Locally conformally Kähler structures on homogeneous spaces, in ''Geometry and analysis on manifolds'', Progr. Math., 308, Birkhäuser/Springer, Cham, 2015, 353–372. MR3331405
[I]
N. Istrati, Existence criteria for special locally conformally Kähler metrics, Ann. Mat. Pura. Appl. 198 (2019), 335-353. MR3927157
[KO]
Y. Kamishima and L. Ornea, Geometric flow on compact locally conformally Kähler manifolds, Tohoku Math. J. 57 (2005), no. 2, 201-221. MR2137466
[K]
Ma. Kato, Some remarks on subvarieties of Hopf manifolds, Tokyo J. Math. 2 (1979), no. 1, 47-61. MR0541896
[M]
Y. Matsushima, Sur les espaces homogènes kählériens d'un groupe de Lie réductif, Nagoya Math. J. 11 (1957), 53-60. MR0087177
[OT]
K. Oeljeklaus and M. Toma, Non-Kähler compact complex manifolds associated to number fields, Ann. Inst. Fourier (Grenoble) 55 (2005), no. 1, 161-171. MR2141693
[OV1]
L. Ornea and M. Verbitsky, Topology of locally conformally Kähler manifolds with potential, Int. Math. Res. Not. IMRN 2010, no. 4, 717-726. MR2595004
[OV2]
L. Ornea and M. Verbitsky, Automorphisms of locally conformally Kähler manifolds, Int. Math. Res. Not. IMRN 2012, no. 4, 894-903. MR2889162
[OV3]
L. Ornea and M. Verbitsky, LCK rank of locally conformally Kähler manifolds with potential, J. Geom. Phys. 107 (2016), 92-98. MR3521469
[OV4]
L. Ornea and M. Verbitsky, Locally conformally Kähler metrics obtained from pseudoconvex shells, Proc. Amer. Math. Soc. 144 (2016), 325-335. MR3415599
[OV5]
L. Ornea and M. Verbitsky, Positivity of LCK potential, J. Geom. Anal. 29 (2019), no. 2, 1479-1489. MR3935266
[O]
A. Otiman, Morse-Novikov cohomology of locally conformally Kähler surfaces, Math. Z. 289 (2018), no. 1-2, 605-628. MR3803805
[T]
K. Tsukada, The canonical foliation of a compact generalized Hopf manifold, Differential Geom. Appl. 11 (1999), no. 1, 13-28. MR1702479
[Va1]
I. Vaisman, On locally and globally conformal Kähler manifolds, Trans. Amer. Math. Soc. 262 (1980), no. 2, 533-542. MR0586733
[Va2]
I. Vaisman, A survey of generalized Hopf manifolds, Conference on differential geometry on homogeneous spaces (Turin, 1983), Rend. Sem. Mat. Univ. Politec. Torino 1983, Special Issue, 205-221 (1984). MR0829006
[Ve]
M. Verbitsky, Theorems on the vanishing of cohomology for locally conformally hyper-Kähler manifolds, Proc. Steklov Inst. Math. 246 (2004), no. 3, 54-78. MR2101284
[VVO]
M. Verbitsky, V. Vuletescu and L. Ornea, Classification of non-Kähler surfaces and locally conformally Kähler geometry, Russian Math. Surveys 76 (2021), no. 2, 261-289. MR4236241


Home Riv.Mat.Univ.Parma