Riv. Mat. Univ. Parma, Vol. 13, No. 2, 2022
Liviu Ornea ^{[a,b]} and Misha Verbitsky ^{[c,d]}
Compact homogeneous locally conformally Kähler manifolds are Vaisman. A new proof
Pages: 439448
Received: 30 November 2021
Accepted: 14 April 2022
Mathematics Subject Classification: 53C55, 53C30
Keywords: Locally conformally Kähler, homogeneous, LCK potential, Vaisman manifold, holomorphic action
Authors address:
[a]: University of Bucharest, Faculty of Mathematics and Informatics, Bucharest, Romania
[b]: Institute of Mathematics “Simion Stoilow” of the Romanian Academy, Bucharest, Romania
[c]: Instituto Nacional de Matemática Pura e Aplicada (IMPA), Rio de Janeiro, Brasil
[d]: Laboratory of Algebraic Geometry, Faculty of Mathematics, National Research University Higher School of Economics, Moscow, Russia
Full Text (PDF)
Abstract:
An LCK manifold with potential is a complex manifold
with a Kähler potential on its cover, such that
any deck transformation multiplies the Kähler potential by
a constant multiplier. We prove that any homogeneous
LCK manifold admits a metric with LCK potential. This is used
to give a new proof that any compact
homogeneous LCK manifold is Vaisman.
L. Ornea is partially supported by Romanian Ministry of Education and Research, Program PNIII, Project number PNIIIP4IDPCE20200025, Contract 30/04.02.2021.
M. Verbitsky is partially supported by the HSE University Basic Research Program, FAPERJ E26/202.912/2018 and CNPq  Process 313608/20172.
References
 [B]

F. A. Belgun,
On the metric structure of nonKähler complex surfaces,
Math. Ann. 317 (2000), 140.
MR1760667
 [D]

O. Debarre,
Higherdimensional algebraic geometry,
Universitext, SpringerVerlag, New York, 2001.
MR1841091
 [DO]

S. Dragomir and L. Ornea,
Locally conformal Kähler geometry,
Progress in Math. 155, Birkhäuser, Boston, MA, 1998.
MR1481969
 [Ga]

P. Gauduchon,
La 1forme de torsion d'une variété hermitienne compacte,
Math. Ann. 267 (1984), 495518.
MR0742896
 [GMO]

P. Gauduchon, A. Moroianu and L. Ornea,
Compact homogeneous lcK manifolds are Vaisman,
Math. Ann. 361 (2015), 10431048.
MR3319558
 [Gu]

D. Guan,
A note on the classification of compact homogeneous locally conformal Kähler manifolds,
J. Math. Stat. 13 (2017), no. 3, 261267.
DOI
 [HK1]

K. Hasegawa and Y. Kamishima,
Locally conformally Kähler structures on homogeneous spaces,
Progr. Math., 308, Birkhäuser/Springer, Cham, 2015, 353372.
MR3331405
 [HK2]

K. Hasegawa and Y. Kamishima,
Compact homogeneous locally conformally Kähler manifolds,
Osaka J. Math. 53 (2016), 683703.
MR3533463
 [HK3]

K. Hasegawa and Y. Kamishima,
Locally conformally Kähler structures on homogeneous spaces,
in ''Geometry and analysis on manifolds'', Progr. Math., 308,
Birkhäuser/Springer, Cham, 2015, 353–372.
MR3331405
 [I]

N. Istrati,
Existence criteria for special locally conformally Kähler metrics,
Ann. Mat. Pura. Appl. 198 (2019), 335353.
MR3927157
 [KO]

Y. Kamishima and L. Ornea,
Geometric flow on compact locally conformally Kähler manifolds,
Tohoku Math. J. 57 (2005), no. 2, 201221.
MR2137466
 [K]

Ma. Kato,
Some remarks on subvarieties of Hopf manifolds,
Tokyo J. Math. 2 (1979), no. 1, 4761.
MR0541896
 [M]

Y. Matsushima,
Sur les espaces homogènes kählériens d'un groupe de Lie réductif,
Nagoya Math. J. 11 (1957), 5360.
MR0087177
 [OT]

K. Oeljeklaus and M. Toma,
NonKähler compact complex manifolds associated to number fields,
Ann. Inst. Fourier (Grenoble) 55 (2005), no. 1, 161171.
MR2141693
 [OV1]

L. Ornea and M. Verbitsky,
Topology of locally conformally Kähler manifolds with potential,
Int. Math. Res. Not. IMRN 2010, no. 4, 717726.
MR2595004
 [OV2]

L. Ornea and M. Verbitsky,
Automorphisms of locally conformally Kähler manifolds,
Int. Math. Res. Not. IMRN 2012, no. 4, 894903.
MR2889162
 [OV3]

L. Ornea and M. Verbitsky,
LCK rank of locally conformally Kähler manifolds with potential,
J. Geom. Phys. 107 (2016), 9298.
MR3521469
 [OV4]

L. Ornea and M. Verbitsky,
Locally conformally Kähler metrics obtained from pseudoconvex shells,
Proc. Amer. Math. Soc. 144 (2016), 325335.
MR3415599
 [OV5]

L. Ornea and M. Verbitsky,
Positivity of LCK potential,
J. Geom. Anal. 29 (2019), no. 2, 14791489.
MR3935266
 [O]

A. Otiman,
MorseNovikov cohomology of locally conformally Kähler surfaces,
Math. Z. 289 (2018), no. 12, 605628.
MR3803805
 [T]

K. Tsukada,
The canonical foliation of a compact generalized Hopf manifold,
Differential Geom. Appl. 11 (1999), no. 1, 1328.
MR1702479
 [Va1]

I. Vaisman,
On locally and globally conformal Kähler manifolds,
Trans. Amer. Math. Soc. 262 (1980), no. 2, 533542.
MR0586733
 [Va2]

I. Vaisman,
A survey of generalized Hopf manifolds,
Conference on differential geometry on homogeneous spaces (Turin, 1983),
Rend. Sem. Mat. Univ. Politec. Torino 1983, Special Issue, 205221 (1984).
MR0829006
 [Ve]

M. Verbitsky,
Theorems on the vanishing of cohomology for locally conformally hyperKähler manifolds,
Proc. Steklov Inst. Math. 246 (2004), no. 3, 5478.
MR2101284
 [VVO]

M. Verbitsky, V. Vuletescu and L. Ornea,
Classification of nonKähler surfaces and locally conformally Kähler geometry,
Russian Math. Surveys 76 (2021), no. 2, 261289.
MR4236241
Home Riv.Mat.Univ.Parma