Riv. Mat. Univ. Parma, Vol. 13, No. 2, 2022
Weiyi Zhang ^{[a]}
Almost complex Hodge theory
Pages: 481504
Received: 2 December 2021
Accepted: 15 February 2022
Mathematics Subject Classification: 32Q60, 53C15, 58A14.
Keywords: Almost complex manifolds, Hodge theory, Harmonic analysis, Stokes phenomenon.
Author address:
[a]: University of Warwick, Mathematics Institute, England
Full Text (PDF)
Abstract:
We review the recent development of Hodge theory for almost
complex manifolds. This includes the determination of whether
the Hodge numbers defined by \(\bar\partial\)Laplacian
are almost complex, almost
Kähler, or birational invariants in dimension four.
References
 [1]

D. Angella and V. Tosatti,
Leafwise flat forms on InoueBombieri surfaces,
arXiv:2106.16141 [math.DG], preprint, 2021.
DOI
 [2]

L. Auslander,
Lecture notes on niltheta functions,
Regional Conference Series in Mathematics, No. 34,
AMS, Providence, R.I.,1977.
MR0466409
 [3]

L. Auslander and R. Tolimieri,
Abelian harmonic analysis, theta functions and function algebras on a nilmanifold,
Lecture Notes in Mathematics, 436, SpringerVerlag, BerlinNew York, 1975.
MR0414785
 [4]

L. Bonthrone and W. Zhang,
\(J\)holomorphic curves from closed \(J\)antiinvariant forms,
Comm. Anal. Geom., to appear.
 [5]

N. Buchdahl,
On compact Kähler surfaces,
Ann. Inst. Fourier (Grenoble) 49 (1999), no. 1, 287302.
MR1688136
 [6]

H. Chen and W. Zhang,
Kodaira Dimensions of almost complex manifolds I,
Amer. J. Math., to appear.
 [7]

H. Chen and W. Zhang,
Kodaira dimensions of almost complex manifolds II,
Comm. Anal. Geom., to appear.
 [8]

J. Cirici and S. Wilson,
Topological and geometric aspects of almost Kähler manifolds via harmonic theory,
Selecta Math. (N.S.) 26 (2020), no. 3, Paper No. 35, 27 pp.
MR4110721
 [9]

C. Deninger and W. Singhof,
The \(e\)invariant and the spectrum of the Laplacian for compact nilmanifolds covered by Heisenberg groups,
Invent. Math. 78 (1984), no. 1, 101112.
MR0762355
 [10]

S. K. Donaldson,
YangMills invariants of fourmanifolds,
Geometry of lowdimensional manifolds, 1 (Durham, 1989),
London Math. Soc. Lecture Note Ser., 150, Cambridge Univ. Press, Cambridge, 1990, 540.
MR1171888
 [11]

T. Draghici, T.J. Li and W. Zhang,
Symplectic forms and cohomology decomposition of almost complex fourmanifolds,
Int. Math. Res. Not. IMRN 2010, no. 1, 117.
MR2576281
 [12]

G. B. Folland,
Harmonic analysis in phase space,
Annals of Mathematics Studies, 122,
Princeton University Press, Princeton, NJ, 1989.
MR0983366
 [13]

F. Hirzebruch,
Some problems on differentiable and complex manifolds,
Ann. of Math. (2) 60 (1954), 213236.
MR0066013
 [14]

T. Holt,
BottChern and \(\bar\partial\) harmonic forms on almost Hermitian \(4\)manifolds,
Math. Z. 302 (2022), no. 1, 4772.
MR4462670
 [15]

T. Holt,
Solving the KodairaSpencer problem using harmonic analysis on torus bundles over \(S^1\),
Warwick thesis, 2022.
 [16]

T. Holt and W. Zhang,
Harmonic forms on the KodairaThurston manifold,
Adv. Math. 400 (2022), Paper No. 108277, 30 pp.
MR4385143
 [17]

T. Holt and W. Zhang,
Almost Kähler KodairaSpencer problem,
Math. Res. Lett., to appear.
 [18]

A. Lamari,
Courants kählériens et surfaces compactes,
Ann. Inst. Fourier (Grenoble) 49 (1999), no. 1, 263285.
MR1688140
 [19]

T.J. Li and W. Zhang,
Comparing tamed and compatible symplectic cones and cohomological properties of almost complex manifolds,
Comm. Anal. Geom. 17 (2009), no. 4, 651683.
MR2601348
 [20]

Y. Miyaoka,
Kähler metrics on elliptic surfaces,
Proc. Japan Acad. 50 (1974), 533536.
MR0460730
 [21]

R. Piovani and A. Tomassini,
BottChern Laplacian on almost Hermitian manifolds,
Math. Z. 301 (2022), no. 3, 26852707.
MR4437335
 [22]

R. Piovani and A. Tomassini,
On the dimension of Dolbeault harmonic \((1,1)\)forms on almost Hermitian \(4\)manifolds,
Pure Appl. Math. Q. 18 (2022), no. 3, 11871201.
 [23]

R. Piovani,
Dolbeault harmonic \((1,1)\)forms on \(4\)dimensional compact quotients of Lie groups with a left invariant almost Hermitian structure,
J. Geom. Phys. 180 (2022), Paper No. 104639, 18 pp.
MR4470102
 [24]

L. F. Richardson,
Global solvability on compact Heisenberg manifolds,
Trans. Amer. Math. Soc. 273 (1982), no. 1, 309317.
MR0664044
 [25]

D. Ruberman and N. Saveliev,
On the spectral sets of Inoue surfaces,
in ''Gauge theory and lowdimensional topology: progress and interaction'',
The Open Book Series, 5, MSP, Berkeley, CA, 2022, 285297,
DOI: 10.2140/obs.2022.5.285.
 [26]

Y. T. Siu,
Analyticity of sets associated to Lelong numbers and the extension of closed positive currents,
Invent. Math. 27 (1974), 53156.
MR0352516
 [27]

E. M. Stein,
Harmonic analysis: realvariable methods, orthogonality, and oscillatory integrals,
With the assistance of T. S. Murphy, Princeton Mathematical Series, 43,
Monographs in Harmonic Analysis, III, Princeton University Press, Princeton, NJ, 1993.
MR1232192
 [28]

N. Tardini and A. Tomassini,
\(\bar{\partial}\)Harmonic forms on \(4\)dimensional almostHermitian manifolds,
Math. Res. Lett., to appear.
 [29]

C. H. Taubes,
\({\rm SW}\Rightarrow{\rm Gr}\): from the SeibergWitten equations to pseudoholomorphic curves,
J. Amer. Math. Soc. 9 (1996), no. 3, 845918.
MR1362874
 [30]

M. Verbitsky,
Hodge theory on nearly Kähler manifolds,
Geom. Topol. 15 (2011), no. 4, 21112133.
MR2860989
 [31]

C. Voisin,
Hodge theory and complex algebraic geometry, I,
Translated from the French original by L. Schneps,
Cambridge Studies in Advanced Mathematics, 76,
Cambridge University Press, Cambridge, 2002.
MR1967689
 [32]

W. Zhang,
Intersection of almost complex submanifolds,
Camb. J. Math. 6 (2018), no. 4, 451496.
MR3870361
Home Riv.Mat.Univ.Parma