Riv. Mat. Univ. Parma, Vol. 13, No. 2, 2022

Weiyi Zhang [a]

Almost complex Hodge theory

Pages: 481-504
Received: 2 December 2021
Accepted: 15 February 2022
Mathematics Subject Classification: 32Q60, 53C15, 58A14.
Keywords: Almost complex manifolds, Hodge theory, Harmonic analysis, Stokes phenomenon.
Author address:
[a]: University of Warwick, Mathematics Institute, England

Full Text (PDF)

Abstract: We review the recent development of Hodge theory for almost complex manifolds. This includes the determination of whether the Hodge numbers defined by \(\bar\partial\)-Laplacian are almost complex, almost Kähler, or birational invariants in dimension four.

D. Angella and V. Tosatti, Leafwise flat forms on Inoue-Bombieri surfaces, arXiv:2106.16141 [math.DG], preprint, 2021. DOI
L. Auslander, Lecture notes on nil-theta functions, Regional Conference Series in Mathematics, No. 34, AMS, Providence, R.I.,1977. MR0466409
L. Auslander and R. Tolimieri, Abelian harmonic analysis, theta functions and function algebras on a nilmanifold, Lecture Notes in Mathematics, 436, Springer-Verlag, Berlin-New York, 1975. MR0414785
L. Bonthrone and W. Zhang, \(J\)-holomorphic curves from closed \(J\)-anti-invariant forms, Comm. Anal. Geom., to appear.
N. Buchdahl, On compact Kähler surfaces, Ann. Inst. Fourier (Grenoble) 49 (1999), no. 1, 287-302. MR1688136
H. Chen and W. Zhang, Kodaira Dimensions of almost complex manifolds I, Amer. J. Math., to appear.
H. Chen and W. Zhang, Kodaira dimensions of almost complex manifolds II, Comm. Anal. Geom., to appear.
J. Cirici and S. Wilson, Topological and geometric aspects of almost Kähler manifolds via harmonic theory, Selecta Math. (N.S.) 26 (2020), no. 3, Paper No. 35, 27 pp. MR4110721
C. Deninger and W. Singhof, The \(e\)-invariant and the spectrum of the Laplacian for compact nilmanifolds covered by Heisenberg groups, Invent. Math. 78 (1984), no. 1, 101-112. MR0762355
S. K. Donaldson, Yang-Mills invariants of four-manifolds, Geometry of low-dimensional manifolds, 1 (Durham, 1989), London Math. Soc. Lecture Note Ser., 150, Cambridge Univ. Press, Cambridge, 1990, 5-40. MR1171888
T. Draghici, T.-J. Li and W. Zhang, Symplectic forms and cohomology decomposition of almost complex four-manifolds, Int. Math. Res. Not. IMRN 2010, no. 1, 1-17. MR2576281
G. B. Folland, Harmonic analysis in phase space, Annals of Mathematics Studies, 122, Princeton University Press, Princeton, NJ, 1989. MR0983366
F. Hirzebruch, Some problems on differentiable and complex manifolds, Ann. of Math. (2) 60 (1954), 213-236. MR0066013
T. Holt, Bott-Chern and \(\bar\partial\) harmonic forms on almost Hermitian \(4\)-manifolds, Math. Z. 302 (2022), no. 1, 47-72. MR4462670
T. Holt, Solving the Kodaira-Spencer problem using harmonic analysis on torus bundles over \(S^1\), Warwick thesis, 2022.
T. Holt and W. Zhang, Harmonic forms on the Kodaira-Thurston manifold, Adv. Math. 400 (2022), Paper No. 108277, 30 pp. MR4385143
T. Holt and W. Zhang, Almost Kähler Kodaira-Spencer problem, Math. Res. Lett., to appear.
A. Lamari, Courants kählériens et surfaces compactes, Ann. Inst. Fourier (Grenoble) 49 (1999), no. 1, 263-285. MR1688140
T.-J. Li and W. Zhang, Comparing tamed and compatible symplectic cones and cohomological properties of almost complex manifolds, Comm. Anal. Geom. 17 (2009), no. 4, 651-683. MR2601348
Y. Miyaoka, Kähler metrics on elliptic surfaces, Proc. Japan Acad. 50 (1974), 533-536. MR0460730
R. Piovani and A. Tomassini, Bott-Chern Laplacian on almost Hermitian manifolds, Math. Z. 301 (2022), no. 3, 2685-2707. MR4437335
R. Piovani and A. Tomassini, On the dimension of Dolbeault harmonic \((1,1)\)-forms on almost Hermitian \(4\)-manifolds, Pure Appl. Math. Q. 18 (2022), no. 3, 1187-1201.
R. Piovani, Dolbeault harmonic \((1,1)\)-forms on \(4\)-dimensional compact quotients of Lie groups with a left invariant almost Hermitian structure, J. Geom. Phys. 180 (2022), Paper No. 104639, 18 pp. MR4470102
L. F. Richardson, Global solvability on compact Heisenberg manifolds, Trans. Amer. Math. Soc. 273 (1982), no. 1, 309-317. MR0664044
D. Ruberman and N. Saveliev, On the spectral sets of Inoue surfaces, in ''Gauge theory and low-dimensional topology: progress and interaction'', The Open Book Series, 5, MSP, Berkeley, CA, 2022, 285-297, DOI: 10.2140/obs.2022.5.285.
Y. T. Siu, Analyticity of sets associated to Lelong numbers and the extension of closed positive currents, Invent. Math. 27 (1974), 53-156. MR0352516
E. M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, With the assistance of T. S. Murphy, Princeton Mathematical Series, 43, Monographs in Harmonic Analysis, III, Princeton University Press, Princeton, NJ, 1993. MR1232192
N. Tardini and A. Tomassini, \(\bar{\partial}\)-Harmonic forms on \(4\)-dimensional almost-Hermitian manifolds, Math. Res. Lett., to appear.
C. H. Taubes, \({\rm SW}\Rightarrow{\rm Gr}\): from the Seiberg-Witten equations to pseudo-holomorphic curves, J. Amer. Math. Soc. 9 (1996), no. 3, 845-918. MR1362874
M. Verbitsky, Hodge theory on nearly Kähler manifolds, Geom. Topol. 15 (2011), no. 4, 2111-2133. MR2860989
C. Voisin, Hodge theory and complex algebraic geometry, I, Translated from the French original by L. Schneps, Cambridge Studies in Advanced Mathematics, 76, Cambridge University Press, Cambridge, 2002. MR1967689
W. Zhang, Intersection of almost complex submanifolds, Camb. J. Math. 6 (2018), no. 4, 451-496. MR3870361

Home Riv.Mat.Univ.Parma